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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC, L(G)) of G is   a   graph   with   vertex   set   V(G)E(G)   
and   two   vertices   in B(Kp, NINC, L(G)) are adjacent if and only if they correspond to two 
adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted 
by B2(G). In this paper, domination number, independent, connected, total, cycle, point-set, restrained, 
split and non-split domination numbers in B2(G) are determined. Also the bounds for the above 
numbers are obtained.  
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1. Introduction 
Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 

V(G) and E(G) denote its vertex set and edge set respectively. For a connected graph G, 
the eccentricity eG(v) of a vertex v in G is the distance to a vertex farthest from v. Thus, 

eG(v) = {dG(u, v) : uV(G)}, where dG(u, v) is the distance between u and v in G. If there 
is no confusion, then we simply denote the eccentricity of vertex v in G as e(v) and d(u, v) 
to denote the distance between two vertices u, v in G respectively. The minimum and 
maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) 
respectively. The neighborhood NG(v) of a vertex v is the set of all vertices adjacent to v in 

G. The set NG[v] = NG(v){v} is called the closed neighborhood of v. A set S of edges in a 
graph G is said to be independent, if no two of the edges in S are adjacent. A set of 
independent edges covering all the vertices of a graph G is called perfect matching. An 
edge e = (u, v) is a dominating edge in a graph G, if every vertex of G is adjacent to at least 
one of u and v.  

The concept of domination in graphs was introduced by Ore [15]. A set D  V(G) is 

said to be a dominating set of G, if every vertex in V(G)D is adjacent to some vertex in 

D. D is said to be a minimal dominating set if D{u} is not a dominating set for any 
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uD. The domination number (G) of G is the minimum cardinality of a dominating set. 

We call a set of vertices a -set, if it is a dominating set with cardinality (G). Different 
types of dominating sets have been studied by imposing conditions on the dominating 
sets. A dominating set D is called a connected (independent) dominating set, if the induced 
subgraph <D> is connected (independent) [17]. D is called a total dominating set, if every 
vertex in V(G) is adjacent to some vertex in D [4]. A dominating set D is called a cycle 
dominating set, if the subgraph <D> has a Hamiltonian cycle and is called a perfect 

dominating set, if every vertex in V(G)D is adjacent to exactly one vertex in D [5]. D is 

called a restrained dominating set, if every vertex in V(G)D is adjacent to another vertex 

in V(G)D [6]. By c, i, t, 0, p and r, we mean the minimum cardinality of a 
connected dominating set, independent dominating set, total dominating set, cycle 
dominating set, perfect dominating set and restrained dominating set respectively. 

 
Sampathkumar and Pushpalatha [16] introduced the concept of point-set domination 

number of a graph. A set D  V(G) is called a point-set dominating set (psd-set), if  for 

every set T  V(G)D, there exists a vertex vD such that the subgraph <T{v}> 

induced by T{v} is connected. The point-set domination number ps(G) is the 
minimum cardinality of a psd-set of G. Kulli and Janakiram [14] introduced the concept 
of split and non-split domination in graphs. A dominating set D of a connected graph G is 

a split (non-split) dominating set, if the induced subgraph <V(G)D> is disconnected 

(connected). The split (non-split) domination number s(G) (ns(G)) of G is the minimum 

cardinality of a split(non-split) dominating set. A set F  E(G) is an edge dominating set, 
if each edge in E is either in F or is adjacent to an edge in F. The edge domination number 

(G) is the smallest cardinality among all minimal edge dominating sets. An edge 

dominating set F  E(G) is an independent edge dominating (i.e.d) set, if the induced 

subgraph <F> is independent. The independent edge domination number i(G) of G is the 
minimum cardinality of an i.e.d. set. 

 
When a new concept is developed in graph theory, it is often first applied to particular 

classes of graphs. Afterwards more general graphs are studied. As, for every graph 
(undirected, uniformly weighted) there exists a adjacency (0, 1) matrix, we call the general 
operation as Boolean operation. Boolean operation on a given graph uses the adjacency 
relation between two vertices or two edges and incident relationship between vertices and 
edges and define new structure from the given graph. This adds extra bit information of 
the original graph and encode it new structure. If it is  possible to decode the given graph 
from the encoded graph in polynomial time, such operation may be used to analyze 
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various structural properties of original graph in terms of the Boolean graph. If it is not 
possible to decode the original graph in polynomial time, then that operation can be used 
in graph coding or coding of certain grouped signals. The mixed relations of incident, 
non-incident, adjacent and non-adjacent can be used to analyze nature of clustering of 
elements of communication networks. The concept of domination set can be visualized  in 
each cluster as that cluster representatives and the domination set of whole network can be 
taken as representatives of entire network. If any clustering or a partition of vertices   
network such that each cluster having at least one representative or at least one element of 
dominating set of the given network  

 
Whitney[19] introduced the concept of the line graph L(G) of a given graph G in 

1932. The first characterization of line graphs is due to Krausz. The Middle graph M(G) of 
a graph G was introduced by Hamada and Yoshimura[7]. Chikkodimath and 
Sampathkumar[3] also studied it independently and they called it, the semi-total graph 
T1(G) of a graph G. Characterizations were presented for middle graphs of any graph, 
trees and complete graphs in [1]. The concept of total graphs was introduced by Behzad[2] 
in 1966. Sastry and Raju[18] introduced the concept of quasi-total graphs and they solved 
the graph equations for line graphs, middle graphs, total graphs and quasi-total graphs. 
These graphs are very much useful in the construction of various related networks from 
the underlying graphs of networks. This motivates us to define and study other graph 
operations. Using L(G), G, incident and non-incident, complementary operations, 
complete and totally disconnected structures, one can get thirty-two graph operations. As 
already total graphs, semi-total edge graphs, semi-total vertex graphs and quasi-total 
graphs and their complements (8 graphs) are defined and studied, we have studied all 
other similar remaining graph operations.  This is illustrated below. 

 
                                                                                                                     
 
                               

 
 

Here,G and  L(G)  denote  the  complement  and  the  line graph   of  G  respectively.  
Kp  is  the complete graph on p vertices. 

The points and lines of a graph are called its elements. Two elements of a graph are 
neighbors, if they are either incident or adjacent. The Total graph T(G) of G has vertex set 

V(G)E(G) and vertices of T(G) are adjacent, whenever they are neighbors in G. The 
Quasi- total graph[18] P(G) of G is a graph with vertex set as that of T(G) and two vertices 
are adjacent if and only if they correspond to two nonadjacent vertices of G or to two 
adjacent edges of G or to a vertex and an edge incident to it in G. The Middle graph M(G) 

 G /G / Kp  /Kp 
 INCIDENT (INC) 
 NOT INCIDENT 
(NINC) 

L(G)/L(G)/Kq/Kq 
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of G is one whose vertex set is as that of T(G) and two vertices are adjacent in M(G), 
whenever either they are adjacent edges of G or one is a vertex of G and the other is an 

edge of G incident with it. Clearly, E(M(G)) = E(T(G))E(G). 
 

The Boolean function graph B(Kp, NINC, L(G)) of G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC, L(G)) are adjacent if and only if they 
correspond to two adjacent edges of G or to a vertex and an edge not incident to it in G[]. 

For brevity, this graph is denoted by B2(G). In other words, V(B2(G)) = V(G)V(L(G)); 

and E(B2(G)) = [E(T(G))(E(G)E(L(G)))]E(L(G)), whereG, L(G) and T(G) 
denote the complement, the line graph and the total graph of G respectively. The vertices 
of G and L(G) are referred as point and line vertices respectively.  
    

In this paper, we determine the domination numbers mentioned above for this graph 
B2(G). The definitions and details not furnished in this paper may be found in [8]. 
 

2. Prior Results 
In this section, we list some results with indicated references, which will be used 

in the subsequent main results. Let G be any (p, q) graph. 
 

Theorem 2.1[16]: Let G = (V, E) be a graph. A set S  V is a point-set dominating set of 

G if and only if for every independent set W in VS, there exists a vertex u in S such that 

W  NG(u)(VS).  
 
Observation[13]: 
2.2: L(G) is an induced subgraph of B2(G) and the subgraph of B2(G) induced by point 
vertices is totally disconnected. 

2.3: The number of vertices in B2(G) is p + q and if di = degG(vi),  viV(G) and the  

number  of  edges  in  B2(G)  is  q(p - 3) + (1/2)1ipdi
2. 

2.4: The degree of a point vertex in B2(G) is q - degG(v) and the degree of a line vertex  e 
is degL(G)(e) + p - 2. Also, if d2(v) denotes the degree of a point vertex v in B2(G), then       

0  d2(v)  q. Similarly, if  d2(e)  is  the  degree of  a  line vertex  e  in  B2(G),  then        

0  d2(e)  p + q - 3. 
 
Theorem 2.5[13]: B2(G) contains isolated vertices if and only if G is one of the following  

graphs:  nK1 and K1,mtK1, for n  1, m  1 and t  0. 
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Theorem 2.6[13]: B2(G) is disconnected (no component being K1) if and only if G  2K2. 
 

 
3. Main Results 

In the following, we find the graphs G for which the domination number  of B2(G) is  
2 or 3. 
 

Proposition 3.1: For any   graph G having at least one edge, (B2(G))  2. 
Proof: Since B2(G) contains no vertex of degree p + q–1, the proposition follows. 
 
Lemma 3.1: Any 2-set of B2(G) containing either two point vertices or a point vertex and 
a line vertex is not a dominating set of B2(G). 
Proof: Let D be a 2-set of B2(G). 
Case(i). D contains two point vertices. 

Let D = {v1, v2}, where v1, v2 are any two point vertices in B2(G). Then v1, v2V(G). If v1 
and v2 are not adjacent in G, then since G contains at least one edge and the subgraph of 
B2(G) induced by point vertices is totally disconnected, D is not a dominating set of B2(G). 
If v1 and v2 are adjacent in G, then the line vertex in B2(G) corresponding to the edge 
joining v1 and v2 is not adjacent to any of the vertices in D. Hence, D is not a dominating 
set of B2(G).  
Case(ii): D contains one point and one line vertex. 

Let e be the line vertex in D and e be the corresponding edge in G. Then the point vertex 
in B2(G) corresponding to at least one of the end vertices of e is not adjacent to any of the 
vertices in D and hence D is not a dominating set of B2(G). Hence, the lemma follows. 
 

Theorem 3.1: (B2(G)) = 2 if and only if  i(G) = 2, where i(G) is the edge independent 
domination number of G. 

Proof: Assume (B2(G)) = 2. By Lemma 3.1., there exists a dominating set D of B2(G) 
containing exactly two line vertices. Let e1 and e2 be the edges in G corresponding to the 
line vertices in D. If e1 and e2 are adjacent in G, then D does not dominate the point 
vertex in B2(G) corresponding to the vertex  in G common to both e1 and e2. Hence, e1 
and e2 are nonadjacent edges in G. Since D dominates all the line vertices in V(B2(G))–D, 
each line vertex in V(B2(G))–D is adjacent to at least one of the vertices in D. Thus, D is 

an independent dominating set of L(G) and hence i(L(G)) = 2. That is, i(G) = 2. 
Converse is obvious. 
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Remark 3.1: D is also an independent dominating set of B2(G) and hence i(B2(G)) =  2 if 

and only if i(G)  = 2. 
 

Theorem 3.2: Let G be any graph having at least one edge. If i(G)  2, then (B2(G))= 3. 

Proof: If i(G)  2, then (B2(G))  3 by Theorem 3.1. Let e = (u, v) be an edge in G, 

where u, vV(G). Let e be the line vertex in B2(G) corresponding to e. Then u, v, 

eV(B2(G)). Then the set {u, v, e} is a dominating set of B2(G). Thus, ( B2(G))  3. 

Hence, (B2(G)) = 3. 
 

Remark 3.2: D is also an independent dominating set of B2(G) and hence if i(G)  2, 

then i(B2(G)) = 3. 
 
Remark 3.3: If e1 and e2 are two adjacent edges and u is the common vertex, then the set 
containing the point vertex u and the line vertices corresponding to the edges e1 and e2 is a 
dominating set of B2(G).  
 

The following propositions are stated without proof, as they are immediate from the 
definitions of related parameters. 
 

Proposition 3.2: Let G  K1,nmK1 and C3mK1, where n  1 and m  0. Then 

(B2(G))  1(G), where 1(G) is the line covering number for G. 
 

Proposition 3.3: If G is a graph other than a star and if (G)  3, then (B2(G))  (G), 

where  (G) is the edge domination number of G. 
 
Theorem 3.3: B2(G) has no dominating edge. 
Proof: By Lemma 3.1., any 2-dominating set of B2(G) contains line vertices only. 
Therefore, if B2(G) has a dominating edge, then the end vertices  must be line vertices and 
the corresponding edges in G are adjacent. But the point vertex corresponding to the 
vertex common to these edges is not adjacent to any of the above line vertices, which is a 
contradiction. Hence, B2(G) has no dominating edge. 
 

Remark 3.4: Theorem 3.3., reveals that, c(B2(G))  3. 
 

In the following, the graphs G for which the connected domination number c(B2(G)) 
is 3 are obtained. 
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Theorem 3.4: Let G be any graph such that B2(G) is connected. Then c(B2(G)) =  3 if and 
only if one of the following holds. 

(i). There exists a dominating set D of L(G) with <D>  P3 in L(G); 

(ii). G contains P3K1 as an induced subgraph such that edges in G incident with the 
vertex in K1 are adjacent to at least one of the edges of P3; and 

(iii). G contains 2K2K1 as a subgraph such that edges incident with the vertex in K1 are 
adjacent to at least one of the edges of 2K2. 

Proof: Assume c(B2(G)) = 3. Then there exists a connected dominating set D having 
three vertices in B2(G) and the subgraph of B2(G) induced by D is either C3 or P3. If all the 

vertices of D are line vertices then D  V(L(G)) and hence L(G) contains C3 or P3  as an 
induced subgraph such that all the vertices in L(G) are adjacent to vertices of C3 or P3. If 

D contains two line vertices and one point vertex, then G contains P3K1 or 2K2K1 as 
an induced subgraph such that edges incident with the vertex in K1 are adjacent to at least 
one of the edges of P3 or 2K2. Conversely, if (i), (ii) or (iii) holds, then there exists a 

connected dominating set D of B2(G) containing three vertices. Hence, c(B2(G))  3. But, 

c(B2(G))  3 by Remark 3.4. Thus, c(B2(G)) = 3. 
 

Theorem 3.5: Let G be any graph such that B2(G) is connected and c(B2(G))  4. Then 

c(B2(G))  5 . 
Proof:  
Case(i): G contains triangles. 

Let v1, v2, v3 be the vertices of a triangle in G and e12, e23 and e13 be the line vertices in 

B2(G)  corresponding  to the  edges (v1, v2), (v2, v3) and (v1, v3) respectively. Then, {v1, e12, 

e23, e13} is a connected dominating set of B2(G). Hence, c(B2(G))  4. 
Case(ii): G is triangle free. 

Since B2(G) is connected and c(B2(G))  4, G contains P4, P3K2 or 3K2 as a subgraph. If 
G contains P4 as a subgraph, then there exists a dominating set D of B2(G) such that <D> 

 K1+K1+K2 in B2(G). If G contains P3K2 as a subgraph, then there exists a dominating 

set D of five vertices in B2(G) such that <D>  P5 in B2(G). Similarly, if G contains 3K2 as 

a subgraph, then there exists a dominating set D of B2(G) with <D>  P4 in B2(G). Hence, 

c(B2(G))  5. 

The bound c(B2(G))  4 is attained, when G  Kn, n  5 and Pm, m  7. 
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Remark 3.5: From the above theorems, it follows that, the total domination number 

t(B2(G)) is also at most 4, since if G contains P3K2 as a subgraph, then there exists a 
total dominating set of B2(G) containing 4 vertices.  
 

Similarly, the following propositions can be proved. 

Proposition 3.4: Cycle domination number 0 of B2(G) is 3 if and only if either there 

exists a dominating set D of L(G) with <D>  C3 in L(G). That is, 0(L(G)) = 3 orG 

contains P3K1 as an induced subgraph such that the edges of G incident with the vertex 
in K1 are adjacent to at least on of the edges in P3. 
 

Proposition 3.5: 0(B2(G))  0(L(G)). 
 

In the following, the graphs G for which the perfect domination number p of B2(G) 
is 2 or 3 are obtained. 
 

Theorem 3.6.:  For any graph G with at least two edges, p(B2(G)) = 2 if and only if G  
2K2. 

Proof: Assume p(B2(G)) = 2. Then there exists a perfect dominating set D of B2(G)  

containing two vertices. But, by Proposition 6.3.2.,  ( B2G)) = 2 if and only if i(G) = 2 . 
Hence, D must contain two line vertices such that the corresponding edges, say e1 and e2 
in G are independent. Since D is a perfect dominating set of B2(G), each line vertex (or 

point vertex) in B2(G)D is adjacent to exactly one of the vertices in D. That is, there 

exists no edge in G adjacent to at least one of e1 and e2. Hence, G  2K2. Converse is 
obvious. 
 

Theorem 3.7: For any graph G not totally disconnected, p(B2(G)) = 3 if and only if G is 

one of the graphs C3, P3 and K2mK1,  m 1. 

Proof: Assume p(B2(G)) = 3. Then there exists a perfect dominating set D of B2(G) 

having three vertices. If all the vertices of D are point vertices, then G  P3, C3 or K2K1. 

If D contains two point vertices and one line vertex, then G  K2mK1, m  1. If all the 

vertices of D are line vertices, then G  C3. Converse is obvious. 
 
Remark 3.6: There exists no perfect dominating set containing at least four vertices in 
B2(G).  
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In the following, the point-set domination number ps of B2(G) is determined by 

applying Theorem 2.1. We give a lower bound for ps(B2(G). 
 

Theorem 3.8: ps(B2(G))  3. 

Proof: By Theorem 3.1.,  (B2G)) = 2 if and only if i(G) = 2. That is, any 2-dominating 
set of B2(G) contains only line vertices such that the corresponding edges in G are 
independent. Hence, any point-set dominating set (psd-set) D of B2(G) with |D|= 2 will 

contain only line vertices. Let D = {e1, e2} be a dominating set of B2(G) and e1 = (v1, v2), 

e2 = (v3, v4) be the corresponding edges in G, where v1, v2, v3, v4V(G). Then, e1 and e2 are 

independent in G and for the independent set W = {v1, v3} in V(B2(G))D, there exists no 
vertex in D adjacent to  both  v1  and  v3  and  hence  D  is not  a  psd-set  of  B2(G)  by  

Theorem 3.1. Therefore,  ps(B2(G))  3. 

This bound is attained, when G  K1,3. 
 

Remark 3.7:  If radius of L(G) is 1, then ps(B2(G)) = 3. 
 

An upper bound for ps(B2(G)) is given in terms of number of edges in G,  as follows. 

Theorem 3.9: For any graph G having at least one edge, ps(B2(G))  q + 2. 

Proof: Let v1 and v2 be any two adjacent vertices in G. Then D = V(L(G)){v1, v2} is a 

psd-set of B2(G) and hence ps(B2(G))  q + 2. 

This bound is attained, if G  2K2K1.  
 

Theorem 3.10: ps(B2(G))   (p/2) + 2, if there exists a unique perfect matching in G. 

Proof: Let M be the perfect matching in G and eM. Since each element in M is an edge 

in G, let e = (u, v), where u, vV(G). Then the line vertices in B2(G) corresponding to the 

edges in M together with the vertices u, v is a psd-set of B2(G). Hence, ps(B2(G))(p/2)+2. 
 
Remark 3.8: (i). For any graph G having at least 3 vertices, the set of all point vertices in 
B2(G) is a psd-set of B2(G) if and only if there exists no perfect matching in G. 
(ii). Any dominating set of B2(G) containing line vertices only is not a psd-set of B2(G). 
 

In the following, the restrained domination number r of B2(G) is obtained. We find 

the graphs G for which r( B2(G)) is 2. 
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Theorem 3.11: r(B2(G)) = 2 if and only if there exist two independent edges e1 and e2 in 

G such that each edge in G is adjacent to at least one of e1 and e2 and for every vV(G), 

there exists an edge in G{e1, e2} not incident with v. 

Proof: Assume r(B2(G)) = 2. Then there exists a restrained dominating set D of B2(G) 
containing two vertices. Since D is a 2-dominating set of B2(G), the vertices of D must be 
line vertices and the corresponding edges in G are independent and each edge in G is 
adjacent to  at least one of the above independent edges. Let there exist a vertex v in G 

such that all the edges in G{e1, e2} are incident with v, then vV(B2(G))–D is not 
adjacent to any of the vertices in V(B2(G))–D, which is a contradiction.  
Conversely, assume there exist two independent edges e1 and e2 in G such that each edge 

in G  is adjacent to  at least one  of  e1  and  e2  and  for every  vV(G),  there exists  an 
edge  in  

G{e1, e2} not incident with v. Let D be the set of line vertices in B2(G) corresponding to 
the edges in e1 and e2. Let w be a point vertex in V(B2(G))–D. By the assumption, w is 
adjacent to a line vertex in V(B2(G))–D. Also each line vertex in V(B2(G))–D is adjacent to 
either a point vertex or a line vertex in V(B2(G))–D, since each line vertex is adjacent to p–

2 point vertices. Hence, D is a restrained dominating set of B2(G) and r(B2(G))  2. But 

r(B2(G))  2. Therefore, r(B2(G)) = 2.] 
 

The next theorem relates r(B2(G)) with the line independence number 1 of G.  

Theorem 3.12: If G  C3, K1,n, n  1, then r(B2(G))  1(G) + 1. 

Proof: Let D be a line cover of G with |D| = 1(G). Since G  C3, K1,n, n  1, D contains 

at least two independent edges. Let D be the line vertices in B2(G) corresponding to the 

edges in D. If <E(G)–D>  K1,nmK1, for n  1 and m  0, then D is a restrained 

dominating set of B2(G) and r(B2(G))  1(G). If <E(G)–D>  K1,nmK1, for n  1 and 

m  0, then D{center vertex of K1,n} is a restrained dominating set of B2(G) and in this 

case, r(B2(G))  1(G) + 1. 
 

Remark 3.9: r(B2(G)) = 1(G), if G  C4 and r(B2(G)) = 1(G)+1, if G  K1+K1+K2. 
 

 Similarly, a relationship between r(B2(G)) and the point covering number 0 of G 
can be given. 
 

Theorem 3.13: r(B2(G))  0(G) + 1, if there exists a point cover D of G with |D| = 

0(G)  3 such that <D> is not independent. 
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Remark 3.10:  
(i). For any connected graph G with at least 3 vertices, the set of all point vertices is a 
restrained dominating set of B2(G). 
(ii). Since no two point vertices in B2(G) are adjacent, the set of all line vertices is not a 
restrained dominating set of B2(G). 
 

In the following, the split domination number s of B2(G) is determined. Here, the 
graphs G for which both G and B2(G) are connected, are considered. 
 

Theorem 3.14: Let 1(G)  2 and e1, e2 be two independent edges in G. Then the set of 
line vertices in B2(G) corresponding to the edges e1, e2 is a split dominating set of B2(G) if 

and only if G–{e1, e2}  2K2 or K1,nmK1, for n  1 and m  0. 

Proof: Let e1, e2 be the line vertices in B2(G) corresponding to the independent edges e1 

and e2 and D = {e1, e2}. Since D is a dominating set of B2(G), each edge in G is adjacent 

to at least one of the edges e1 and e2. If G–{e1, e2}  2K2 and K1,nmK1, for n  1 and  m 

 0, then <V(B2(G))–{e1, e2}> is connected, which is a contradiction. Converse follows 
easily. 
 

In the following, an upper bound for s(B2(G)) is given. 
 

Theorem 3.15: s(B2(G))  q - (G) + 2, where (G) is the maximum degree of G. 

Proof: Let  v  be a vertex  of maximum  degree in G.  Since B2(G) is connected, G  K1,n, 
for  

n  1 and hence there exists at least one edge e = (u, w), where u, wV(G) in G not 

incident with v. Let D be the set of line vertices in B2(G) corresponding to the edges in G 

not incident with v. Then D = {u, w}D is a dominating set of B2(G) and v is an isolated 
vertex in V(B2(G))–D and hence <V(B2(G))–D> is disconnected . Thus, D is a split 

dominating set of B2(G). Therefore, s(B2(G))  |D| = q - (G) + 2.  

This bound is attained, if G  C3. 
 

Theorem 3.16: Let (G)  2 and v be a vertex of maximum degree in G. If the subgraph 

of G induced by V(G)–{v} contains at least two independent edges, then s(B2(G))  q - 

(G). 
Proof: Let D be the set of line vertices in B2(G) corresponding to the edges not incident 
with v in G. Since <V(G)–{v}> contains at least two independent edges, each point vertex 
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in V(B2(G))–D is adjacent to at least one vertex in D. Since (G)  2, D dominates each 
line vertex in V(B2(G))–D and v is isolated in <V(B2(G))–D>. Hence, D is a split 

dominating set of B2(G) and s(B2(G))  |D| = q - (G). 

This bound is attained, if G  C5. 
 

Theorem 3.17: If 1(G) = 2, then s(B2(G))  p + q – 6, where 1(G) is the line 
independence number of G. 

Proof: Since 1(G) = 2, G contains 2K2   as   an   induced   subgraph. Let e1 = (u1, v1) and 

e2 = (u2, v2) be the edges of 2K2, where u1, v1, u2, v2V(2K2). Then D = {u1, v1, u2, v2, e1, 
e2}  V(B2(G)), where e1 and e2 are the line vertices corresponding to the edges e1 and 

e2 respectively. If D = V(B2(G))D, then D is a dominating set of B2(G). Also 

<V(B2(G))D>  2K1,3 in B2(G) and is disconnected. Hence, D is a split dominating set of 

B2(G). Thus, s(B2(G))  p + q - 6. 

This bound is attained if G  C4. 

 
Remark 3.11:  
(i). The set of all point (or line) vertices in B2(G) is a split domination set B2(G), if G (or 
L(G)) is disconnected 

(ii). If G  P3K2, then there exists a split domination set of B2(G) having two vertices. 

(iii). If G  P3mK2, for m  2, then there exists a split domination set of B2(G) having 
three vertices. 
 
Example 3.1: 

(i).   s(B2(Pn))    = 2,     if n = 4; and 

= n-3,  if n  5. 

(ii).  s(B2(Cn))    = 2,     if n = 4; and 

                = 3,     if n = 3 and n  5. 

(iii). s(B2(Kn))    = ((n - 1)(n - 2)/2), if n  4. 
 

In the following, the upper bounds of non-split domination number ns of B2(G) are 
obtained. 
 
Theorem 3.18: For any graph G having at least six vertices and two adjacent edges, 

ns(B2(G))  4. 
Proof:   Let   P3 : v1 v2 v3   be   a  path   of   length   2  in   G   and   e12 =  (v1, v2),  e23 =   
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(v2, v3)E(G). Let e12, e23 be the corresponding line vertices in B2(G) and  let D = {v2, 

e12, e23}. Then, D  V(B2(G)). If G{e12, e23}  K1,nmK1, for n  1 and m  0,  then  

D  is  a  non-split  dominating  set  of  B2(G).  Hence,  ns(B2(G))  3. If G–{e12, e23}  

K1,nmK1, for n  1 and m  0, then D{center vertex of K1,n} is a non-split dominating 

set of B2(G). Hence, ns(B2(G))  4. 

This bound is attained, if G  2P3. 
 

Theorem 3.19: If 1(G)  3, then ns(B2(G))  p + q - 31(G). 

Proof: Let 1(G) = n, where n  3 and e1, e2,…,en be the n independent edges in G, where 

ei = (ui, vi)E(G), ui, viV(G), i = 1,2,…,n. Let eibe the line vertices in B2(G) 

corresponding to the edges ei, (i = 1,2,…,n). Then D = {u1, v1,…,un, vn, e1, e2,…,en}  

V(B2(G)) and D = V(B2(G))D is a non-split dominating set of B2(G). In fact, 

<V(B2(G)D> is a bipartite subgraph of B2(G). Hence, ns(B2(G))  p + q - 31(G). 

This bound is attained, if G  P6. 
 
Example 3.2:  

(i). ns(B2(Pn))   =  4,  if n =  4; 
        =  2,  if n =  6; and 

        =  3,  if n = 5 and n  7. 

(ii). ns(B2(Cn))  =  4,  if n = 4; 
              =  2,  if n = 5, 6; 

                 =  3,  if n = 3 and n  7. 

(iii). ns(B2(Kn))  =  2,  if n = 4, 5; and 

             = 3,   if n  6. 

(iv). ns(B2(Kn,n)) =  4, if n = 2; and 

                          =  3, if n  3. 
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