International Journal of Engineering Sciences, Advanced Computing and Bio-Technology Vol. 1, No. 4, October –December 2010, pp.191- 201

K- Equitable Labeling of Graphs

N. Sridharan1 and R. Umarani2

¹H.O.D. of Mathematics, Alagappa University, Karaikudi ²Director of Collegiate Education, Chennai

Abstract: Cahit introduced the k- equitable labeling as a generalization of graceful labeling. In this paper, we study on k- equitable labeling and we prove that the graph P_n^+ *is k- equitable for all k, n and the graph* C_n^+ *is k-equitable if* $n \neq \frac{\kappa}{2} (\text{mod } k)$ $\neq \frac{k}{2}$ (mod k) or $k \neq 2n+1$.

1. Introduction

Cahit has introduced a variation of both graceful and harmonious labelings $[1 - 2]$. Let f be a function from the vertices of G to $\{0,1\}$ and for each edge xy assign the label $|f(x) - f(y)|$ and call f a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ at most by 1 and the number of edges labeled 0 and the number of edges labeled 1 differ at most by 1.

In 1990, Cahit proposed the idea of distributing the vertex and edge labels among {0,1,……..k-1}as evenly as possible to obtain a generalization of graceful labeling as follows: For a graph G (V,E) and a positive integer k, assign vertex labels from $\{0,1, \ldots, k-1\}$ so that when the edge labels introduced by the absolute value of the difference of the vertex labels, the number of vertices labeled with i and the number of vertices labeled with j differ by at most one and the number of edges labeled with i and the number of edges labeled with j differ by atmost one. Cahit has called a graph with such an assignment of labels kequitable.

A graph G (V, E) is graceful if and only if it is $E(G) + 1$ – equitable. G is cordial if and only if it is 2-equitable. Szaniszlo has proved that P_{α} is k-equitable for all k[4]. In this paper, we study on k- equitable labeling and we prove that the graph P_n^+ is k- equitable for all k,n. For an extensive survey on graph labeling we refer to Gallian[3].

2. Main Result

Theorem 2.1 : If P_n is the path on *n* vertices, the graph P_n^+ is k-equitable for any k, $n \in N$.

Proof : Let Pn be the path $v_1v_2.....v_n$ and let $v'_1,v'_2....v'_n$ be the pendant vertices adjacent to v_1, v_2, \ldots, v_n respectively in P_n^+ . Let k be a given positive integer.

Received: 22 April, 2010; Revised: 09 July, 2010; Accepted: 11 August, 2010

Let $n = mk + t$ where $1 \le t \le k$. Define a map f: $V(P_n^+) \longrightarrow \{0,1,2,....k-1\}$ as

a) If k is even,

$$
f(v_{2i+1}) = 2i
$$

\n
$$
f(v_{2i+1}) = k - 2i - 1
$$
 for $i = 0,1,2,..., \frac{k}{2} - 1$
\n
$$
f(v_{2i}) = k - 2i
$$

\n
$$
f(v_{2i}) = 2i - 1
$$
 for $i = 0,1,2,..., \frac{k}{2}$
\n
$$
f(v_{k+1}) = f(v_i); f(v_{k+1}) = f(v_i')
$$
 for all $l = 1,2,...,m, i = 1,2,...k$ if $l \neq m$
\n $i = 1, 2,...,t$ if $l = m$

b) If k is odd,

$$
f(v_{2i+1}) = 2i
$$

\n
$$
f(v_{2i+1}) = k - 2i - 1
$$
 for $i = 0,1,2,...$, $\frac{k-1}{2}$
\n
$$
f(v_{2i}) = k - 2i
$$

\n
$$
f(v_{2i}) = 2i - 1
$$
 for $i = 1,2,...$, $\frac{k-1}{2}$
\n
$$
f(v_{k+1}) = f(v_{k-1+1})
$$
 for $j = 1,2,...,k$
\n
$$
f(v_{k+1}) = f(v_{k-1+1})
$$
 for $j = 1,2,...,k$
\n
$$
f(v_{2k+1}) = f(v_{i})
$$
 for $l = 1,2,...$, $\left[\frac{n}{2k}\right]$; and
\n
$$
f(v_{2k+1}) = f(v_{i})
$$
 for $l = 1,2,...$, $\left[\frac{n}{2k}\right]$ and $i = 1,2,...$ (n- $\left[\frac{n}{2k}\right]$ 2k) if $l = \left[\frac{n}{2k}\right]$

One can verify that the number of vertices labelled with i $V_f(i)$ and the number of vertices labelled with j $V_f(j)$ and the number of edges labelled with i $e_f(i)$ and the number of edges labelled with j differs by at most one for all I and j. Thus the graph P_n^+ is K-equitable for all n and k. K- equitable labeling for P_{37}^+ , P_{39}^+ and P_{35}^+ are shown in Figure2.1.

K- Equitable Labeling of Graphs 193

Fig 2.1

Theorem 2.2 : Let n and k be positive integers such that $n \neq$ k 2 (mod k) or $k \neq 2n+1$, then

 C_n^+ is k-equitable.

Proof: Let G = (V,E) be the graph C_n^+ . Let v_1, v_2, \ldots, v_n be the cycle C_n in G and let for each i($1 \le i \le n$), v_i 'be the vertex of degree one and adjacent to the vertex v_i

First we assume that $k < n$.

Let $n = mk + r$, where $0 \le r \le k$ Define $f : V(G) \longrightarrow \{0,1,2,...,k-1\}$ as follows:

$$
f(v_{2kl+j}) = \begin{cases} i-1 \text{ if } i \text{ is odd and } 1 \le i \le k; l = 0,1,..., \left[\frac{m}{2}\right] \\ k-1 \text{ if } i \text{ is even and } 1 \le i \le k; l = 0,1,..., \left[\frac{m}{2}\right] \\ f(v_{(2l+1)k+i}) = f(v_{k+i+1}) \text{ for } l = 0,1,..., \left[\frac{m}{2}\right] \text{ and } i = 1,..., k. \end{cases}
$$

 $f(v'_i) = (k-1) - f(v_i)$ for all $1 \le i \le n$.

We consider various cases and in each case we define a k- equitable labeling g: $V(G) \longrightarrow \{0,1,\ldots,k-1\}$ by modifying the function f.

Case (i) Let k be even.

Subcase (i) Let r =1

Take $g(v_{mk+1}) = k-1$; $g(v_1) = 0$; $g(v_{mk+1}) = 1$ and

$$
g(v_i) = f(v_i) \text{ for all } i \leq m k, g(v'_i) = f(v'_i) \text{ for all } 1 \leq i \leq m k
$$

Thus g is a k-equitable labeling for C_{mk+1}^+ (k is even).

(An **14** - **equitable labeling for** C_{29}^+ **is** is illustrated in the figure 2.2).

Subcase (ii) r is odd
$$
1 \le r \le \frac{k+1}{3}
$$
:

If $r \leq$ $k + 1$ 3 $\overline{+}$ we have r-1 \le k-2r In this case we take g = f, without any modification.

$$
(ie, \ We \ define \ g \ as \ g(u) = f(u) \ for \ all \ u \ \in V(G) \)
$$

(An ${\bf 16}$ - ${\bf equitable}$ labeling for $\,C_{37}^{+}$ is shown in figure 2.3)

Subcase(iii) r is odd,
$$
\frac{k-1}{3} < r < \frac{k}{2}
$$
 and $\frac{k-r+1}{2}$ is odd
\n
$$
g(v_{mk+j}) = \begin{cases} j & \text{if } j = \frac{k-r+1}{2}, \frac{k-r+1}{2} + 2, ..., r-2 \\ r+1 & \text{if } j = r \end{cases}
$$
\n
$$
g(v_{mk+j}) = \begin{cases} j & \text{if } j = \frac{k-r+1}{2} + 1, \frac{k-r+1}{2} + 3, ..., r-1 \\ 2 & \text{and } g(v_i) = f(v_i) & \text{if } i \neq mk+j \text{ where } j \in \left\{ \frac{k-r+1}{2}, \frac{k-r+1}{2} + 2, ..., r-2, r \right\} \\ g(v_i') = f(v_i') & \text{if } i \neq mk+j \text{ where } j \in \left\{ \frac{k-r+1}{2} + 1, \frac{k-r+1}{2} + 3, ..., r-1 \right\} \end{cases}
$$

(A ${\bf 24}$ – ${\bf equitable \, labeling \, for \, }C_{35}^+$ is shown in the Figure 2.4) **Subcase(iv)** r is odd $k - 1$ 3 $\frac{-1}{\ } < r < \frac{k}{-}$ 2 and $k-r+1$ 2 $-r+$ is even i.e., $(r-1 = k \mod 4)$ Let $g(v'_{mk+j}) = j$ if j is even and $j \geq$ $k-r+1$ 2 $-r+$ $g(v_{mk+j}) = j$ if j is odd and j ≥ $k-r+1$ 2 $-r+$ and $g(v_i) = f(v_i)$ for all other v_i and v'_i $g(v'_i) = f(v'_i)$ for all other vertices

(A **26 – equitable labeling for** C_{37}^+ is shown in the Figure 2.5).

Subcase (v) k 2 $\langle r \rangle$ k and r is odd

In this case we take $g = f$.

(In the figure 2.6 , a ${\bf 26}$ equitable labeling for $\, {\bf C}_{\bf 45}^+$ is shown $\,$)

Now we consider the cases when r is even.

Subcase (vi) Let $r = 2$

(As $r ≠$ k 2 and k is even we have k =2 or k \ge 6 but k $\neq 2$, as r \lt k). Assume that $k \geq 6$ We define g as $g(v_{mk+1}) = 0; \t g(v_{mk+2}) = k-1$ $g(v'_{mk+1}) = 2$; $g(v'_{mk+2}) = 1$ and $g(v'_1) = 3$

and $g(u) = f(u)$ for all other vertices u.

(A ${\bf 18}$ - ${\bf equitable}$ labeling for $\,C_{\rm 38}^+$ is shown in the figure 2.7) **Subcase (vii)** r is even and $2 < r \le \frac{k+2}{n}$ $\frac{+2}{\ }$.

3

Let $g(v_{mk+r}) = r$ and $g(u) = f(u)$ for all $u \in V(G) - \{v_n\}$

(See the figure 2.8 ,
for a $\bf 18$ - equitable labeling for
 $\,C_{\rm 40}^+$.)

Subcase (viii) r is even and
$$
\frac{k+2}{3} < r < \frac{k}{2}
$$

If $r = 0 \pmod{4}$ we define g as follows:

$$
g(v_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 1, \frac{r}{2} + 3, \dots, r
$$

$$
g(v'_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 2, \frac{r}{2} + 4, \dots, r-1
$$

$$
g(u) = f(u) \text{ for all other } u \in V(G)
$$

if $r = 2 \pmod{4}$ we define g as

$$
g(v_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 1, \frac{r}{2} + 3, \dots, r
$$

$$
g(v'_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 2, \frac{r}{2} + 4, \dots, r-1
$$

 $g(v_n) = k-r-1$ and $g(u) = f(u)$ for all other vertices $u \in V(G)$ (In the figure 2.9, a 28 - **equitable labeling for** C_{40}^{+} is shown.)

Subcase(ix) r is even and
$$
\frac{k}{2} < r < \frac{2k+1}{3}
$$

In this case we make no changes in f and we take $g = f$

(In the figure 2.10 a ${\bf 28}$ - ${\bf equitable \; labeling \; for \; } C_{44}^+))$

Subcase(x) r is even and
$$
\frac{2k+1}{3} < r < k
$$

If $r = 0 \pmod{4}$ define

$$
g(v_{mk+j}) = j
$$
 for all $j = \frac{r}{2} + 1, \frac{r}{-} + 3, \dots, r-1$

$$
g(v'_{mk+j}) = j
$$
 for all $j = \frac{r}{2} + 2$, $\frac{r}{2} + 4$,......r. $g(u) = f(u)$ for all other vertices u
if r = 2 (mod 4) define

$$
g(v_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 2, \frac{r}{2} + 4, \dots, r-1
$$

$$
g(v'_{mk+j}) = j \quad \text{for all } j = \frac{r}{2} + 1, \frac{r}{2} + 3, \dots, r; g(v_n) = k-r-1
$$

and $g(u) = f(u)$ for all other vertices $u \in V(G)$.

Case (ii) Let k be odd.

Subcase (i) Let $r = 1$ i.e., $n = mk+1$

If m is odd define g as follows: $g(v'_n) = 1$, and $g(u) = f(u)$ for all $u \neq v'_n \in V(c_n^+)$. if m is even, then define the map g as follows: $g(v_n) = 0$, $g(v'_n) = k-1$; $g(u) = f(u)$ for

all u ≠, V_n, V_n'

Subcase (ii) r is odd and $1 \le r \le \frac{k+2}{k}$ 3 $\frac{+2}{2}$.

If m is odd, then define $g(v_n) = r-1$; $g(v'_n) = k-r$ and $g(u) = f(u)$ for all other u. If m is even we define $g(u) = f(u)$ for all $u \in V(C_n^+)$

Subcase (iii) Let $r = 2$

If m is odd, we define g as follows:
$$
g(v_{n-1}) = k-1
$$
; $g(v_n) = 1$
\n $g(v'_{n-1}) = 0$; $g(p_1^+) = k-2$ and $g(u) = f(u)$ for all $u \in V(G)$.
\nIf m is even, we define g as follows:
\n $g(v_n) = (k-2)$; $g(v_{n-1}) = k-1$, $g(v')_{n-1} = 1$; $g(v')_{n-1} = k-1$; $g(v')_{n-2} = 0$
\nand $g(u) = f(u)$ for all $u \in V(G)$.
\nSubcase (iv) Let r be even and $2 < r < \frac{k+2}{3}$.
\nIf m is odd, take $g = f$, i.e., $g(u) = f(u)$ for all $u \in V(G)$.
\nIf m is even, we define g as follows: $g(v_n) = r-1$; $g(v')_{n} = k-r$ and
\n $g(u) = f(u)$ for all other $u \in V(C_n^+)$
\nSubcase (v) r is odd, $\frac{k+2}{3} \leq r < \frac{k}{2}$.

Let m be odd. If $r-1 = 0 \pmod{4}$ We define g as follows:

$$
g(v'_{mk+j}) = j \text{ for } j = \frac{r+1}{2}, \frac{r+1}{2} + 2, \dots, r \text{ and } g(v_{mk+j}) = j \text{ for } j = \frac{r+1}{2} + 1, \frac{r+1}{2} + 3
$$

..., $r-1$ and $g(u) = f(u)$ for all other $u \in V(G)$.

If $r-1 = 2 \pmod{4}$ we define g as follows:

$$
g(v_{mk+j}) = k-j-1 \text{ for } j = \frac{r+3}{2}, \frac{r+3}{2}+2, \dots, r.
$$

\n
$$
g(v'_{mk+j}) = k-j-1 \text{ for } j = \frac{r+3}{2}+1, \frac{r+3}{2}+3, \dots, r-1 \text{ and } g(u) = f(u) \text{ for all other } u.
$$

\nLet m be even, r odd and $\frac{k-r+2}{2}$ be odd.

Define g as follows:

$$
g(v'_{mk+j}) = k-j-1, \qquad \text{for all odd } j \ge \frac{k-r+2}{2}.
$$

$$
g(v_{mk+j}) = k-j-1, \qquad \text{for all even } j \ge \frac{k-r+2}{2} \text{ and } g(u)=f(u) \text{ for all other } u.
$$

If m is even ,r odd and $k-r+2$ 2 $-r+$ is even ,define as follows:

$$
g(v'_{mk+j}) = k-j-1 \text{ for } j = \frac{k-r}{2}, \frac{k-r}{2} + 2, \dots, r.
$$

\n
$$
g(v_{mk+j}) = k-j-1 \text{ for } j = \frac{k-r}{2} + 1, \frac{k-r}{2} + 3, \dots, r-1.
$$

\n
$$
g(v_{mk+j}) = j-2 \text{ for } j = \frac{k-r}{2}.
$$

\n
$$
g(v'_{mk+j}) = j \text{ for } j = \frac{k-r}{2} - 1 \text{ and } g(u) = f(u) \text{ for all other } u \in v(C_n^+).
$$

\nSubcase (vi): Let $\frac{k}{2} < r \le k-1$.

We define the map g as follows: If both m and r are odd, let

$$
g(v_{mk+j}) = \begin{cases} j-1 \text{ for all odd } j \geq \frac{k+1}{2} + 1 \\ k-j \text{ for all even } j \geq \frac{k+1}{2} + 1 \\ g(v_{mk+j}) = \begin{cases} k-j \text{ for all odd } j \geq \frac{k+1}{2} + 1 \\ j-1 \text{ for all even } j \geq \frac{k+1}{2} + 1 \end{cases}
$$

and $g(u) = f(u)$ for all other vertices u .

(a) If both m and r are even, let

$$
g(v_{mk+j}) = \begin{cases} j-1 \text{ for all even } j \geq \frac{k+1}{2} + 1 \\ k-j \text{ for all odd } j \geq \frac{k+1}{2} + 1 \\ g(v_{mk+j}) = \begin{cases} k-j \text{ for all even } j \geq \frac{k+1}{2} + 1 \\ j-1 \text{ for all odd } j \geq \frac{k+1}{2} + 1 \end{cases}
$$

and $g(u) = f(u)$ for all other vertices u.

(b) If one of m and r is even and the other is odd, let

 $g(u) = f(u)$ for all $u \in V(G)$.

In all the above cases one can verify that $V_f(i)$ and $e_f(i)$ differs by at most one for all i. Thus the graph C_n^+ is K-equitable for all $n \neq \frac{k}{n}$ 2 (mod k) or $k \neq 2n+1$, .

Fig 2.2 : A 14-equitable labelling for $\,{{\rm C}_{29}^+}$

 C_{29}^+ Fig 2.3 : A 16-equitable labelling for C_{37}^+

K- Equitable Labeling of Graphs 199

Fig 2.4 : A 24-equitable labelling for $\,mathrm{C}_{35}^{+}$

 C_{35}^{+} Fig 2.5 : A 26-equitable labelling for C_{37}^{+}

Fig 2.6 : A 26-equitable labelling for $\,{{\rm C}}_{45}^+$

 C_{45}^+ Fig 2.7 : An 18-equitable labelling for C_{38}^+

200 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Fig 2.8 : A 18-equitable labelling for C_{40}^{+}

 C_{40}^{+} Fig 2.9 : A 28-equitable labelling for C_{40}^{+}

Fig 2.10 : A 28-equitable labelling for $\,mathrm{C}^+_{44}$

 C_{44}^+ Fig 2.11 : A 23-equitable labelling for C_{28}^+

References

- [1] I. Cahit, On Cordial and 3 Equitable Labelings of Graphs, Utilita Mathematica, 37(1990), 189 198.
- [2] I. Cahit, Equitable Tree Labelings, Ars Combinatoria, 140(1995), 279 286
- [3] J.A. Gallian A Dynamic Survey of Graph Labeling, Electronic J. Combinatorics, 5(1998) # DS6.
- [4] Z.Szaniszlo, K-equitable labelings of cycles and some other graphs, Ars Combinatoria, 37(1994), 49 63.
- [5] R.Umarani, A Study on graph labelings k-Equitable and strong α labelings, Ph.D. Thesis, 2003.