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Abstract: For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. Let V(G) = 
{v : vV(G)} be a copy of V(G). The Super duplicate graph D*(G) of G is   the graph whose vertex set 
is V(G)V(G) and edge set is  E(G) {uv, uv : uvV(G)}, whereG is the complement of G. In 
this paper, some basic properties of D*(G) are studied. Also a criterion for D*(G) to be Eulerian and a 
sufficient condition for Hamiltonicity are obtained. Finally, the parameters girth, connectivity, covering 
number, independence number, chromatic number, domination number and neighborhood number 
are determined for super duplicate graphs. 
 
1. Introduction 

 
 Graphs discussed in this paper are undirected and simple graphs. For a graph G, let 
V(G) and E(G) denote its vertex set and edge set respectively. Eccentricity of a vertex 

uV(G) is defined as eG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance 
between u and v in G. If there is no confusion, then we simply denote the eccentricity of 
vertex v in G as e(v) and d(u, v) to denote the distance between two vertices u, v in G 
respectively. The minimum and maximum eccentricities are the radius and diameter of G, 
denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is called a self-centered 
graph with radius r, equivalently G is r-self-centered.  
 

The concept of domination in graphs was introduced by Ore [4]. A set D  V(G) is 

said to be a dominating set of G, if every vertex in V(G)D is adjacent to some vertex in 

D. D is said to be a minimal dominating set if D{u} is not a dominating set, for any 

uD. The domination number (G) of G is the minimum cardinality of a dominating set. 

D is a global dominating set, if it is a dominating set of both G and its complementG. 

The global domination number g of G is the minimum cardinality of a global dominating 
set [7]. A total dominating set D of G is a dominating set such that the induced sub graph 

<D> has no isolated vertices. The total domination number t(G) of G is the minimum 
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cardinality of a total dominating set. This concept was introduced in Cockayne et al [1]. A 

-set is a minimum dominating set. Similarly, a g-set, t-set are defined. 
 

For vV(G), the neighborhood N(v) of v is the set of all vertices adjacent to v in G. 

N[v] = N(v){v} is called the closed neighborhood of v. A subset S of V(G) is a 

neighborhood set (n-set) of G, if G = vS<N[v]>, where <N[v]> is the sub graph of G 
induced by N[v]. The neighborhood number n0(G) of G is the minimum cardinality of an 
n-set of G [8].  

For a graph G, let V (G) = {v: vV(G)} be a copy of V(G). Then the Duplicate 

graph D(G) of G is the graph whose vertex set is V(G)V(G)  and edge set is  {uv and 

uv : uvE(G)}. This graph was first studied by Sampathkumar [6] and was further 
developed by Patil et al [5]. The Super duplicate graph D*(G) of G is the graph whose 

vertex set is V(G)V(G) and edge set is E(G) {uv, uv : uvV(G)}, whereG is the 
complement of G. 

 
The concept of super duplicate graph of a given graph defines Boolean function of a 

graph based on the adjacency of the vertices of the given graph. The important application 
of facility location on networks is based on various types of graphical centrality, all of 
which are defined using distance. There has been rapid growth of research in the study of 
domination parameters of graphs, it is used in communication network, coding theory 
and in network surveillance by Radar stations; it finds application in Projective Geometry 
and in ‘covering’ or ‘location problems’. 
 

In this paper, some basic properties of D*(G) are studied. Also a criterion for D*(G) 
to be Eulerian and a sufficient condition for Hamiltonicity are obtained. Finally, the 
parameters girth, connectivity, covering number, independence number, chromatic 
number, domination number and neighborhood number are determined for super 
duplicate graphs. The definitions and details not furnished in this paper may found in [2]. 

 

2. Prior Results 
 
In this section, we list some results with indicated references, which will be used in the 
subsequent main results. 

 

Theorem 2.1[2]: For any nontrivial connected graph G, 0 + 0 = p = 1 + 1, where p is 
the number of vertices in G. 
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Theorem 2.2[5]: If G is either a complete graph Kn(n  3) or G contains an odd 
Hamiltonian cycle, then the Duplicate graph D(G) is Hamiltonian. 
 
Proposition 2.3[8]: For a graph G of order p, neighborhood number n0 of G is 1 if and 
only if G has a vertex of degree p-1. 
 

Theorem 2.4 [3]: Let G be geodetic. ThenG is also geodetic if and only if G is one of the 
following. 

1. G is a cycle C5 of length 5. 
2. G is a path P4 of length 3. 
3. G is isomorphic to the Bull graph. 
 

3. Main Results 
 
The following elementary properties of a super duplicate graph are immediate. Let G be a 
(p, q) graph. 
(a). Duplicate  graph  D(G)  is  spanning  sub graph   of  D*(G).  D*(G)  is   a   (2p, ((p(p-
1))/2) + q) graph. 

(b). V(D*(G)) can be partitioned into two sets V and V such that the sub graph of D*(G) 

induced by the vertices in V is totally disconnected and that of D*(G) induced by the 
vertices in V is the complement of G. 

(c). For any vertex vV(G), there are two vertices v and v in D*(G),  such  that  

degD*(G)(v) = p - 1   and   degD*(G)(v) = degG(v).   Hence,  (D*(G)) = p - 1 and (D*(G)) 

= (G). 
(d). D*(G) is biregular with degree sequence k, p - 1 if and only if G is k- regular, where k 

 p - 1 and is regular if and only if G is complete. 

(e). If G orG is non-planar, then D*(G) is also non-planar. 
 
In the following, we find the graphs G for which D*(G) is disconnected. 
 

Theorem 3.1: Let G be a graph with (G)  1. Then D*(G) is disconnected if and only if 
G is a complete bipartite graph. 

Proof: Assume (G)  1 and D*(G) is disconnected. Since (G)  1 andG is an 

induced sub graph of D*(G),  D*(G)  is  connected,  ifG is connected.  Let G be  

disconnected and let G1, G2 , …, Gn, (n  2) be the components ofG. If one of them say, 
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G1 is not complete, then there exists a vertex vV(G1) such that vV(D*(G)) is adjacent 

to at least one vertex in each component ofG and hence in D*(G). Thus, D*(G) is 

connected.  This is a contradiction. Hence, the components Gi (1  i  n) are complete 

inG.  Similarly, if n  3, then for each vV(Gi) (1  i  n), the vertex v in D*(G) is 
adjacent to all the vertices in the remaining components. Hence, D*(G) is connected, 
which contradicts the fact that D*(G) is disconnected. Thus, n = 2 and G is a complete 
bipartite graph. Converse follows easily. 
 

Remark 3.1: If (G) = 0, then (D*(G)) = 0. 
 

Lemma 3.1: D*(G) contains triangles if and only if either 0(G)  3 or G contains P3; a 

path on 3 vertices as an induced sub graph, where 0(G) is the point independence 
number of G. 

Proof: Assume D*(G) contains triangles. IfG has triangles, then 0(G)  3. LetG be 

triangle-free. Since any two vi ’s are nonadjacent in D*(G), any triangle in D*(G) will 

contain two vertices in V(G) and one vertex in V(G). Then G contains P3; a path on 3 
vertices as an induced sub graph. Hence the lemma follows. Converse is obvious. 
 
In the following, the solution for super duplicate graph, which is bipartite is obtained. 
 
Theorem 3.2: For a connected graph G, D*(G) is bipartite if and only if G is complete. 
Proof: Let D*(G) be bipartite. Then every cycle in D*(G) is of even length. By Lemma 3.1., 

if either o(G)  3 or G contains P3 as an induced sub graph,  then D*(G) is not bipartite. 
Hence, G is complete. Conversely, if G is complete, then D*(G) is bipartite with 

bipartition [V(G), V(G)]. 
 
Remark 3.2: By Theorem 3.2., it follows that D*(G) is regular bipartite if and only if G is 
complete. 
 

A connected graph G is said to be geodetic, if a unique shortest path joins any two of 
its vertices. In the following, the geodetic graphs G for which super duplicate graphs 
D*(G) are also geodetic are characterized.     
                             
Theorem 3.3:  For any geodetic graph G with at least three vertices, D*(G) is geodetic if 
and only if G is either P4; a path on four vertices or C5; a cycle on five vertices. 
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Proof: Let G be any geodetic graph with at least three vertices. Then D*(G) is geodetic 

ifG is geodetic, sinceG is an induced sub graph of D*(G). ButG is geodetic if and only 
if G is one of the following graphs: P4, C5 and the Bull graph by Theorem 2.4. If G is the 
Bull graph, then D*(G) is not geodetic. Hence, G is either P4 or C5. Converse follows from 
the construction of D*(G). 
 
Next, we prove that the girth of D*(G) is at most 6. 
 
Theorem 3.4: For any connected graph G having at least three vertices, the girth of D*(G) 
is 3, 4 or 6. 

Proof: By Lemma 3.1., if either o(G)  3 or G contains P3 as an induced sub graph, then 
D*(G) contains triangles and hence girth of D*(G) is 3. If not, then G is a complete graph. 

If G has least four vertices, then girth of D*(G) is 4. If G  K3, then D*(G) is a cycle on six 
vertices and hence girth of D*(G) is 6. 
 

Remark 3.3: Let G be a disconnected graph with 0(G) = 2 and does not contain P3 as an 

induced sub graph.  Then  girth  of  D*(G)  is  4,  since  if  G  contains  C3K1  as  an 
induced sub graph or if  

G  2K2, then D*(G) contains C4 as an induced sub graph. 
 
Theorem 3.5: D*(G) is not a tree, for any graph G. 
Proof: Follows from Theorem 3.1., Theorem 3.4. and Remark 3.3. 
 
In the following, a criterion for D*(G) being Eulerian is established. 
 

Theorem 3.6: Let G be any (p, q) graph that is not complete bipartite and (G)  1. Then 
D*(G) is Eulerian if and only if p is odd and each vertex in G is of even degree. 

Proof: Suppose D*(G) is Eulerian. Then the degree of the vertices vi and viof D*(G) are 

even. But deg(vi) in D*(G) is p-1 and deg(vi) in D*(G) is degG(vi). Hence, p is odd and 
each vertex in G is of even degree. Conversely, assume that p is odd and each vertex in G 

is of even degree. Since G is not complete bipartite and (G)  1, D*(G) is connected. 
Further by the assumption, every vertex of D*(G) has even degree. Hence, D*(G) is 
Eulerian. 
 
Theorem 3.7: D*(G) is Hamiltonian if G is either a complete graph or G contains an odd 
Hamiltonian cycle. 
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Proof: Since the duplicate graph D(G) of G is a spanning sub graph of D*(G), the theorem 
follows by Theorem 2.2. 
 

Theorem 3.8: D*(Kne), (n  4 is even) has a Hamiltonian path. 

Proof: Let v1, v2, .., vn be the vertices of Kn–e, where n  4 is even, such that v2 be non- 

adjacent to v4 (say). Then v2 v3 v4…. vn v1 vn-1 vn-2… v2 v1 vn is a Hamiltonian path in 

D*(Kne), where n  4 is even. 
 

Theorem 3.9: Let G be a graph with (G)  2 and r(G)  2. Then each edge of D*(G) lies 
on a triangle iff   

(i). For any two vertices u, v in G with dG(u, v) = 3, NG(u)NG(v)  . 

(ii). For each edge (u, v) in G, NG(u)NG(v)   and NG(u)NG(v)  . 

Proof:   Assume  each   edge  of   D*(G)  lies  on  a  triangle.  E(D*(G)) =  E(G){uv 
and uv : uvE(G)}. SinceG is an induced sub graph of D*(G), edges lying on a triangle 

inG also lie on a triangle in D*(G). Let e = (u, v) be an edge inG  not lying in any  

triangle, where u, vV(G). Then dG(u, v)  3. If dG(u, v) = 2, then  there  exists  a  vertex  

wV(G)  adjacent  to  both u and v and  u w v  is  a  triangle  in  D*(G) and  e  lies  on  

a  triangle  in D*(G). Since (u, v)E(G), dG(u, v) = 3. Also since V(D*(G)) = 

V(G)V(G) and the duplicate graph D(G) is an induced sub graph of D*(G), no vertex 

in V(G) is adjacent to both u and v in D*(G). Thus, there must exist a vertex inG 

adjacent to both u and v and  hence   NG(u)NG(v)  .   Consider   the   edge   e = 

(u, v)   in   D*(G),  where (u, v)V(G). By the assumption, e lies on a triangle in D*(G). 

Then there exists a vertex w in D*(G) adjacent to both u and v. But wV(G), since 

<V(G)> is totally disconnected. Therefore, wV(G) and hence (u, w)E(G) and (v, 

w)E(G). Thus, NG(u)NG(v)  . Similarly, the edge e = (u, v) lies on a triangle in 

D*(G) implies that NG(u)NG(v)  . Converse follows easily. 
 

 For a graph G, let (G), (G) and (G) denote respectively the vertex connectivity, 
edge connectivity and the minimum degree of G. We will use the theorem of Whitney [2]: 

For any graph G, (G)  (G)  (G). 
 

Theorem 3.10: If G is a graph that is not complete bipartite, then (D*(G))  (G) and 

(D*(G))  (G). 
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Proof:  Since (D*(G)) = (G), the proposition follows. 
 

The bound (D*(G))  (G) is attained, when r(G) = 1 or G is a cycle on at least 4 

vertices and the bound (D*(G))   (G) is attained, for all graphs G with (G) = 1 and 

G  K4e . 
 

Remark 3.4:  Let {vi : 1  i  t }, (t  p)  be  a  vertex cut ofG. If <G{vi : 1  i  t}>   

contains   exactly   two   complete   components, then {vi, vi : 1  i  t}  is a vertex cut of 
D*(G). 
 

In the following, point covering number 0, point independence number 0, line covering 

number 1, line independence number 1 and the chromatic number  for D*(G) are 
determined. 
 
Theorem 3.11: For any graph G with p vertices, 

(i). 0(D*(G)) = p = 0(D*(G)) 

(ii). 1(D*(G)) = 21(G) and 1(D*(G)) = 21(G). 

Proof: Let V be the vertex set of G and V be the set of new points introduced in the 

construction of D*(G). Since V is an independent set with p points, 0(D*(G))  p. Also 

each vertex in V is adjacent to at least one vertex in V and hence any independent set in 

D*(G) can have at most p points. Thus, 0(D*(G)) = p.  Since D*(G) has 2p points and 

0(D*(G)) + 0(D*(G)) = 2p, 0(D*(G)) = p. It remains to prove that 1(D*(G)) = 

21(G). It is to be observed that corresponding to each edge uv of G, there are two 

independent edges uv and uv in D*(G). Thus, each edge of G gives rise to two 

independent edges in D*(G). So 1(G) independent edges of G give 21(G) independent 
edges in D*(G) and this is the maximum number of independent edges in D*(G). Hence, 

1(D*(G)) = 21(G). From the equation 1(D*(G)) + 1(D*(G)) = 2p = 21(G) + 

21(G), it follows that 1(D*(G)) = 21(G). 
 

The clique cover number of G is the minimum number of complete sub graphs of G, 

needed to cover the vertices of G and is denoted by (G). For any simple graph G,  (G) 

= (G). 
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Theorem 3.12: For any graph G having no isolated vertices, (D*(G)) = (G) or (G) + 

1, where (G) is the clique cover number of G. 

Proof:  SinceG is an induced sub graph of D*(G), (D*(G))  (G) and hence 

(D*(G))  (G), since (G) = (G).  

Case(i):  For   each   vertex  vV(G),  NG(v)  is  k-colorable  where k   (G).  

Then color the vertex v in D*(G) by a color other than k and thus, D*(G) is (G)-

colorable. Hence, (D*(G))  (G) = (G). Therefore, (D*(G)) = (G). 

Case(ii): There  exists  a  vertex  vV(G)  such that NG(v) is (G)( = (G))- colorable. 

Since the sub graph of D*(G) induced by {v : vV(G)} is totally disconnected, D*(G) is 

((G) + 1)-colorable. 

From Case (i) and Case(ii), it follows that (D*(G)) = (G) or (G) + 1. 
 
Example 3.1: 

1. (D*(Kn)) = 2,          if n  3. 

     2.  (D*(Cn)) = 3,          if n = 4; and 

                   = (Cn), if n  5 

     3. (D*(K1,n))= n + 1,  if n  2. 
 

In the following, a necessary and sufficient condition for a global dominating set of G to 
be a dominating set of D*(G) is found. 
 

Theorem 3.13: Let G be any graph having no isolated vertices and D be a g-set of G. 

Then  (D*(G)  g(G) if  and  only  if (<D>)  1. 

Proof:  Let D be a g-set of G and (<D>)  1. For any vertex v in G, there are two 

vertices v, v in D*(G). SinceG is an induced sub graph of D*(G), D dominates all the 

vertices in V(G)V(D*(G)). By the assumption, for each vertex u in V(G) there exists 

a vertex say, w in D such that u is adjacent to w. Hence, D is a dominating set of D*(G). 

Thus, (D*(G))  g(G). Conversely, assume a g-set D of G is also a dominating set of 

D*(G). If (<D>) = 0, then there exists a vertex v in <D> such that deg<D>(v) = 0 and 

hence D does not dominate the vertex v. This is a contradiction to the assumption. 

Hence, (<D>)  1. 

 This bound is attained, if G  C5. 
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Remark 3.5: Theorem 3.13., can be restated as follows. Let D be a g-set of a graph G 

having no isolated vertices. Then (D*(G))  g(G) if and only if D is a total dominating 
set of G. 
 

Remark 3.6: In Theorem 3.13., D must be a g-set of G since otherwise, if D is a 

dominating set ofG but not of G, then there exists a vertex v inG adjacent to all the 

vertices in D and hence the vertex v in D*(G) is not adjacent to any of the vertices in D. 
 

Remark 3.7: Let D be a g-set of G such that <D> contains isolated vertices. If D= 

{vV(G): degD(v) = 0}, then DD is a dominating set of D*(G). 
 

Corollary 3.13.1: Let G be any graph having no isolated vertices and D be a g-set of G.  

Then g(D*(G))  g(G)  if and only if (<D>)  1. 
 

Corollary 3.13.2: (D*(G))  t(G) if and only if there exists a t-set D of G such that for 

each vV(G)D there exists an uD such that uv is not an edge in G, where t(G) is the 
total domination number of G. 
 

Corollary 3.13.3:  2  (D*(G))  p. 
 

 The lower bound is attained, if G  C4, K1,n or Km, where n  2 and m  3 and the 

upper bound is attained, if G  K2. 
 

Theorem 3.14: (D*(G))  (G) + 1, if the neighborhood set of a vertex of minimum 
degree is a dominating set of G. 

Proof: Let vV(G) be such that degG(v) = (G). If NG(v) is a dominating set of G, then 

NG[v] is a dominating set of D*(G) and hence (D*(G))   (G) + 1. 

 This bound is attained, if G  C5. 
 

Theorem 3.15: If diam(G) = 2, then (D*(G))  (G) + 1. 

Proof: If diam(G) = 2, then (G)  (G). Let v be a vertex in G such that degG(v) = (G). 

Then N[v] is a dominating set of D*(G) and hence (D*(G))   (G) + 1. 
 

Corollary 3.15.1: If diam(G) = 2, then g(D*(G))  (G) + 1. 
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 In the following, a condition for a neighborhood set (n-set) ofG to be an 
neighborhood set of D*(G) is found, when G is triangle-free. 
 
Theorem 3.16: Let G be any graph having no isolated vertices and be triangle-free. Then 

n0(D*(G))  n0(G) if and only if there exists an n-set D ofG with D= n0(G) such 
that D is a total dominating set of G. 

Proof: Let D be an n-set ofG with D= n0(G) such that D is a total dominating set 

of G. Then D  V(D*(G)). Since D is an n-set ofG, it is enough to prove that the edges 

uv and uv in D*(G) belong to wD(E<N[w]>). 

(i). SinceG is an induced sub graph of D*(G), the edges xy, xy in D*(G) with x, yD 

and xyE(G) belong to wD(E<N[w]>). 

(ii). Let xD, yV(G)D such that xyE(G). Since xD the edge xy in D*(G) belongs 

to E(<N[x]>). Since G is triangle-free and (<D>)  1, there exists a vertex zD such 

that xzE(G) and yz  E(G). Therefore, xz, yzE(D*(G)) and hence in E(<N[z]>). 

Thus, xyE(<N[z]>). 

(iii). Let x, yV(G)D such that xyE(G). Since D is a dominating set of G, there exists 

a vertex zD, such that xz is an edge in G. Since G is triangle-free yzE(G). Therefore, 

the edges xz, yz in D*(G) belongs to E(<N[z]>). Hence, xyE(<N[z]>). Similarly, 

xyE(<N[z]>) for some zD. 

From (i), (ii) and (iii), it follows that each edge in D*(G) belongs to vD(E<N[v]>) and 

D is n-set for D*(G). Thus, n0(D*(G))  n0(G). Conversely, assume any n-set D ofG is 
also an n-set of D*(G). If D is not a dominating set of G, then for any two vertices x, 

yV(G)D, with xyE(G), the edges xy and xy do not belong to zD(E<N[z]>). 

Similarly, if (<D>) = 0, then there exists a vertex z in D with deg<D>(z) = 0. But since G 

has no isolated vertices and D is a dominating set of G, there exists a vertex yV(G)D 

adjacent to z. Hence,  the   edges   yz  and  yz  are  not  in  wD(E<N[w]>).  Thus, 

(<D>G)  1. 
 
Corollary 3.16.1: Let G be any graph having no isolated vertices and be triangle-free. If 

there exists an n-set D ofG with D= n0(G) such that D is a point cover for G and 

(<D>G)  1, then D is also an n-set of D*(G). 
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In the following, a condition for an n-set ofG to be an n-set of D*(G) is found, when G 
has triangles. 
 
Theorem 3.17: Let G be any graph having no isolated vertices and contain triangles. Then 

n0(D*(G))  n0(G) if and only if there exists an n-set D ofG with D= n0(G) 
satisfying  

(i).  (<D>G)  1; and 

(ii). For each edge uv in G, at least one of u and v is in V(G)D, NG(u)D  NG(v)D, 

where both NG(u)D  and NG(v)D contain at least one vertex in G. 

Proof: Let D be an n-set ofG withD= n0(G), satisfying conditions (i) and (ii). Since 

D is an n-set ofG it is enough to prove the edges of the form xy, xy in D*(G) belong to 

wD(E<N[w]>), where x, yV(G) and xyE(G). 

(a). For x, yD with xyE(G), the edges xy, xy in D*(G) belong to vD(E<N[v]>) 

since D is an n-set ofG. 

(b). By conditions (i) and (ii), corresponding to the edge xyE(G) with xD, 

yV(G)D or both x, yV(G)D, the edges xy, xy in D*(G) belong to 

zD(E<N[z]>). Thus, each edge in D*(G) belongs to vD(E<N[v]>) and D*(G) = 

vD(E<N[v]>). Hence, D is an n-set of D*(G) and n0(D*(G))  n0(G). Conversely, 

assume any n-set D ofG is also an n-set of D*(G). If condition (i) or (ii) is not true, then 
D cannot be an n-set of D*(G). 
 

Corollary 3.17.1: Let G be any graph and D be a dominating set of G such that it is also 

a point cover for G. Then D is an n-set of D*(G) if and only if for each edge uvE(G) 

with uD, vV(G)D, NG(u)D  NG(v)D, where both NG(u)D and NG(v)D 
are not empty. 
 
 

Theorem 3.18: For any graph G, 2  n0(D*(G))  p. 
Proof: n0(D*(G))  = 1 if  and  only if  D*(G)  has a vertex of degree (2p-1). Hence, 

n0(D*(G))  2. Also the set V(G) is an n-set for D*(G) and hence n0(D*(G))   p. 
 
 The lower bound is attained, if G is a star and the upper bound is attained, if G is a 
complete graph on at least 2 vertices. 
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Example 3.2:   
1. n0(D*(Cn))   = 3,       if n = 3; and 

                      = n - 2,  if n  4. 

2. n0(D*(Km,n)) = 2,        if m, n  2.  

3. If G is the wheel on n vertices, then n0(D*(G)) = n - 2, if n  5. 
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