Graceful Labeling of Generalized Tree with Hanging Stars in Geometric Progression

T.N.Janakiraman¹ and G.Sathiamoorthy²

 ${}^{1}Department\ of\ Mathematics,\ National\ Institute\ of\ Technology,\ Tiruchirappalli.$

Email: janaki@nitt.edu

²School of Humanities & Sciences, SASTRA University, Thanjavur.

Email:sami@maths.sastra.edu

Abstract: In this paper, it is shown graceful a labeling of generalized tree obtained from a family of n stars having number of branches of those stars, form a geometric progression with common ratio r and one of the branches of each of those stars, merged with one different point of a common path on n vertices successively in increasing order.

Key words: geometric progression, growing stars, supporting points, hanging points, free leaves, general ratio.

1. Introduction

A simple undirected graph G = (V (G), E (G)) with p vertices and q edges. A function f is called graph labeling of graph G if f: $V \rightarrow \{0, 1, 2 ... q\}$ is injective and the induced function $f^*: E \rightarrow \{1, 2, 3, ..., q\}$ defined as $f^*(e = uv) = |f(u) - f(v)|$ is bijective. All edge values are unique and distinct.

Gallian, [4] gives extensive survey on graceful labeling. Huang, Kotzig, and Rosa [1] gives a new class of graceful trees, Sethuraman and Jesintha [2] shows a new class of graceful rooted trees, they showed generating new graceful trees [3] and Michelle Edwards and lea Howard, given a survey of graceful trees[6]. In the earlier paper of arithmetic progression by us [5] motivated to find graceful labeling for trees with hanging stars which are in geometric progression.

Let P_n be basic of $T_{(G(n),a)}^{(r)}$ tree. Let s_1 , s_2 ,..., s_n be such vertices, which are, term it as supporting vertices of $T_{(G(n),a)}^{(r)}$ tree. In $T_{(G(n),a)}^{(r)}$ at each s_i , a star S_i with i branches having centre c_i with one of the branch vertex of S_i merged with s_i . Here $|S_1|$, $|S_2|$,..., $|S_n|$ form geometric progression with common ratio r and hence it has been denoted as $T_{(G(n),a)}^{(r)}$ tree, where $|E(S_1)| = a$.

2. Main results

Let the support points of the hanging stars S_1, S_2, \ldots, S_n be $s_1, s_2, s_3, \ldots, s_n$ respectively and denote the free leaves of each of the stars S_i by $f_1^{(i)}, f_2^{(i)}, \ldots, f_{i-1}^{(i)}$ for $i = 1, 2, \ldots, n$.

Let $c_1, c_2, ..., c_n$ be the central vertices of the stars $S_1, S_2, S_3, ..., S_n$ respectively.

A tree with growing n hanging stars as branches whose cardinality are in geometric progression with common ratio 'r' is denoted by $T_{(G(n),a)}^{(r)}$, where 'a' is number of branches in star S_1 and 'r' is common ratio any two consecutive stars.

Stars of tree $T_{(G(n),a)}^{(r)}$ can be derived by the relation $|V\left(S_{n}\right)|$ = a r^{n-1} + 1, where n= 1, 2...

It can be verified that the number of vertices of $T_{(G(n),a)}^{(r)}$ can be recursively defined by the relation

$$\left|V(T_{(G(n),a)}^{(r)})\right| = \left|V(T_{(G(n\text{-}1),a)}^{(r)})\right| + (1+r^n) \ .$$

Also the edges of $T_{(G(n),a)}^{(r)}$ can be defined by the relation $\left|E(T_{(G(n),a)}^{(r)})\right| = \left|E(T_{(G(n-1),a)}^{(r)})\right| + (1+r^n).$

Because of the above relation, we define the relation between two successive trees $T_{(G(n),a)}^{(r)}$ and $T_{(G(n),a)}^{(r)}$ as $\left|T_{(G(n),a)}^{(r)}\right|\Theta\left|T_{(G(n-l),a)}^{(r)}\right|=1+r^n$,

where Θ denote the difference between the number of vertices (edges) of $T_{(G(n),a)}^{(r)}$ and $T_{(G(n),a)}^{(r)}$.

let us assume that $|E(S_1)| = a = q_1$, $|E(S_2)| = a r = q_2$, $|E(S_3)| = ar^2 = q_3$,..., and $|E(Sn)| = ar^{n-1} = q_n$.

For example a general tree $\,T^{(2)}_{(G(\mathfrak{n}),2)}\,$ drawn in Figure 1.

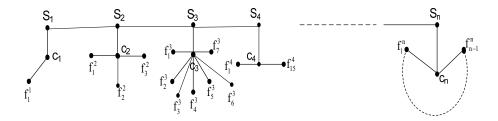


Figure 1

Total number of edges $q = \frac{a(1-r^n)}{1-r} + (n-1)$.

where (n-1) denotes the number of edges in the base path from which the stars are hanging.

We also denote the labeling of node v in the tree as l (v). Here for the tree $T_{(G(n),a)}^{(r)}$, we assign the labeling as follows.

R (1):
$$l(s_1) = 0$$
; $l(c_1) = q$; $l(c_2) = a$, $l(s_2) = q$ -a.

R (2):
$$l(s_{2m+1}) = l(s_{2m-1}) + (a r^{2m-1} + 1), m \ge 1.$$

R (3):
$$l(s_{2m+2}) = l(s_{2m}) - (a r^{2m} + 1), m \ge 1.$$

R (4):
$$l(c_{2m+1}) = l(c_{2m-1}) - (a r^{2m-1} + 1), m \ge 1.$$

R (5):
$$l(c_{2m+2}) = l(c_{2m}) + (a r^{2m} + 1), m \ge 1.$$

Let the free leaves of growing m^{th} star of $T_{(G(n),a)}^{(r)}$ at s_m be f_1^m , f_2^m ... f_k^m where $k = ar^{m-1}-1$.

Let the free leaves of S_1 are labeled with values 1 to q_1 -1.

Then for $m \ge 1$

The labeling of free leaves of odd stars of S_{2m+1} based on its supporting vertex s_{2m+1} as

R(6)a: labeling of $(ar^{2m}-1)$ free leaves of S_{2m+1} are given by the integers starting from $l(c_{2m})$ + 1 to $l(c_{2m})$ + ar^{2m} except the value of $l(s_{2m+1})$.

The labeling of free leaves of even stars S_{2m} based on its supporting vertex s_{2m} as follows.

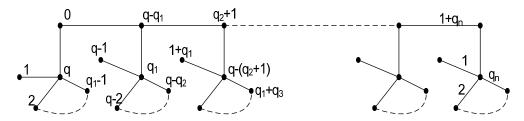
R (6) b: labeling of $(ar^{2m-1}-1)$ free leaves of S_{2m} are given by the integers starting from l (c_{2m-1}) - ar $^{2m-1}$ to l (c_{2m-1}) –1 except the value of l (s_{2m}).

The above labeling of vertices (edges) induces a bijective mapping I_E and I_V as follows.

$$I_{E}: E(T_{(G(n),a)}^{(r)}) \longrightarrow \{1, 2, 3, ..., \frac{a(1-r^{n})}{1-r} + (n-1)\}$$

$$I_{V}: V(T_{(G(n),a)}^{(r)}) \longrightarrow \{0, 1, 2, ..., \frac{a(1-r^{n})}{1-r} + (n-1)\}$$

The edge assignment as follows.



this could be verified easily that it is a graceful labeling for the given tree $T_{(G(\mathfrak{n}),a)}^{(r)}$ from the following assignment tables.

The vertex assignment table:

Labeling of T _n	Labeling of vertices
\mathbf{s}_1	0
\mathbf{c}_1	q
Remaining free leaves of S ₁	1 to a-1
\mathbf{s}_2	q-a
$c_{\scriptscriptstyle 2}$	a
Remaining free leaves of S ₂	${q-1 \text{ to } (q-q_2) \text{ except } (q-a)}$
S ₃	1+q ₂
C ₃	q-(1+q ₂)
Remaining free leaves of S ₃	$\{(a + 1) \text{ to } (a + q_3) \text{ except}(1+q_2)\}$
S_4	q-(a+q ₃ +1)
c_4	a+ q ₃ + 1
Remaining free leaves of S ₄	$\{(q-q_2-2) \text{ to } (q-(q_2+q_4+1)$
	except $(q-(a+q_3+1))$
s_{2m}	q-l(c _{2m})
c_{2m}	$a+q_3+q_5++q_{2m-1}+m-1$
Remaining free leaves of S _{2m}	The relation R (6b) assigns the values.
s_{2m+1}	$q_2 + q_4 + + q_{2m} + m$
c_{2m+1}	q-l(s _{2m+1})
Remaining free leaves of S_{2m+1}	The relation R (6a) assigns the values.

s _{2n}	q- l(c _{2n})
c _{2n}	$l(c_{2n}) = l(c_{2n-2}) + a r^{2n-2} + 1$
Remaining free leaves of S _{2n}	The relation R (6b) assigns the values.
S_{2n+1}	$l(s_{2n+1}) = l(s_{2n-1}) + ar^{2n-1} + 1)$
c _{2n+1}	q- l(s _{2n+1})
Remaining free leaves of S _{2n+1}	The relation R (6a) assigns the values.

Table 1

The edge assignment follows.

Labeling of T _n	Labeling of edge values
edge s ₁ c ₁	q
free leaves of S ₁	q-1 to q-(a-1)
edge s ₁ s ₂	q-a
edge s ₂ c ₂	q-2a
free leaves of S ₂	q-(a+1) to q-(a+q ₂) except (q-2a)
edge s ₂ s ₃	q-(a+q ₂ +1)
edge s ₃ c ₃	q-(2q ₂ +2)
free leaves of S ₃	$q-(a+q_2+2)$ to $q-(a+q_2+q_3+1)$ except $q-2(1+q_2)$
edge s ₃ s ₄	$q-(a+q_2+q_3+2)$
edge s ₄ c ₄	q-2(a+q ₃ +1)
free leaves of S ₄	$q-(a+q_2+q_3+3)$ to $q-(a+q_2+q_3+q_4+2)$ except $q-2(a+q_3+1)$
edge s _{2m-1} s _{2m}	$q-(a+q_2++q_{2m-1}+2m-2)$
edge s _{2m} c _{2m}	$q-2(a+q_2++q_{2m-1}+m-1)$
free leaves of S _{2m}	q -(a+ q_2 ++ q_{2m-1} +2m-1) to q -(a+ q_2 ++ q_{2m} +2m-2) except edge $l(s_{2m}c_{2m})$
edge s _{2m} s _{2m+1}	$q-(a+q_2++q_{2m}+2m-1)$
edge s _{2m+1} c _{2m+1}	$q-2(a+q_2++q_{2m}+m)$
free leaves of S _{2m+1}	q-(a+q ₂ ++q _{2m} +2m) to q-(a+q ₂ ++q _{2m+1} +2m-1) except edge $l(s_{2m+1}c_{2m+1})$

edge s _{n-1} s _n	1+ E (S _n)
edge s _n c _n	$ l(s_n)-l(c_n) $
free leaves of S _n	E (S _n) to 1 except edge l(s _n c _n)

Table 2

We observe that the labeling of S_i 's in which s_{2m+1} , $m \ge 1$ are increasing order and s_{2m} , $m \ge 1$ 2 are decreasing order in relation with q. $l(s_i) + l(c_i) = q$. for any i, and hence it can be observed that the reverse property of $l(s_i)$'s is satisfied for $l(c_i)$'s.

References

- [1] C. Huang, A. Kotzig, and A. Rosa, Further results on tree labellings, Util. Math., 21c (1982) 31-48
- [2] G. Sethuraman and J. Jesintha, A new class of graceful rooted trees, J. Disc. Math. Sci. Crypt., 11 (2008) 421-435
- [3] G. Sethuraman and J. Jesintha, Generating new graceful trees, Proc. Inter. Conf. Math. Comput. Sci., July (2008) 67-73
- [4] Gallian, J A A Dynamic Survey of Graceful Labeling, The Electronic Journal of Combinatories, twelfth edition January 2009.
- [5] T.N. Janakiraman and G. Sathiamoorthy, Graceful labeling of a tree with hanging stars in which number of branches in arithmetic progression, Inter. J. Eng. Sci. Comp. and Biotech. Vol (communicated)
- [6] Michelle Edwards and lea Howard, A survey of graceful trees, Atlantic journal of Mathematics, vol 1(summer 2006) 5-30.