International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 3, July –September 2010, pp. 146-151

Graceful Labeling of Generalized Tree of Hanging Stars in Arithmetic Progression

T.N.Janakiraman¹ and G.Sathiamoorthy²

¹Department of Mathematics, National Institute of Technology, Tiruchirappalli. E-Mail: janaki@nitt.edu. ²School of Humanities & Sciences, SASTRA University, Thanjavur. E-Mail: sami@maths.sastra.edu

Abstract: In this paper, it is shown graceful a labeling of generalized tree obtained from a family of n stars having number of branches of those stars form an arithmetic progression with common difference j and one of the branches of each of those stars merged with one different point of a common path on n vertices successively in increasing order.

Key words: arithmetic progression, growing stars, supporting points, hanging points, free leaves, general difference.

Mathematical classification 2010: 05C78

1. Introduction

A simple undirected graph G = (V (G), E (G)) with p vertices and q edges. A function f is called graph labeling of graph G if f: $V \rightarrow \{0, 1, 2 \dots q\}$ is injective and the induced function f^{*}: $E \rightarrow \{1, 2, 3, \dots, q\}$ defined as $f^*(e = uv) = |f(u) - f(v)|$ is bijective. All edge values are unique and distinct.

Gallian, [4] gives extensive survey on graceful labeling. Huang, Kotzig, and Rosa [1] gives a new class of graceful trees, Sethuraman and Jesintha [2] shows a new class of graceful rooted trees, they showed generating new graceful trees[3] and Michelle Edwards and Lea Howard, given a survey of graceful trees[5].

Let P_n be basic path of $T_{(A(n),a)}^{(j)}$ tree. Let $s_1, s_2,..., s_n$ be such vertices, which are termed as supporting vertices of $T_{(A(n),a)}^{(j)}$ tree. In $T_{(A(n),a)}^{(j)}$ at each s_i , a star S_i with i branches having centre c_i with one of the branch vertex of S_i merged with s_i . Here $\{|S_1|, |S_2|,...,|S_n|\}$ forms an arithmetic progression with common difference j and hence it has been denoted as $T_{(A(n),a)}^{(j)}$ tree, where $|E(S_1)| = a$.

Received: 11 January, 2010; Revised: 14 April, 2010; Accepted: 25 May, 2010

International Journal of Engineering Science, Advanced Computing and Bio-Technology

2. Main results

Let the support points of the hanging stars S_1, S_2, \ldots, S_n be $s_1, s_2, s_3, \ldots, s_n$ respectively and denote the free leaves of each of the stars S_i by $f_1^{(i)}, f_2^{(i)}, \ldots, f_{i-1}^{(i)}$ for $i = 1, 2, \ldots, n$.

Let $c_1, c_2,...,c_n$ be the central vertices of the stars $S_1, S_2, S_3,...,S_n$ respectively.

A tree with growing n hanging stars as branches whose cardinality are in generalized arithmetic progression with common difference j is denoted by $T_{(A(n),a)}^{(j)}$, where 'a' is number of branches in star S₁ and 'j' is common difference between number of branches of any two consecutive stars.

Stars of tree $T_{(A(n),a)}^{(j)}$ can be derived by the relation $|V(S_i)| = a + (i-1) j+1$, where i = 1, 2, 3, ..., n.

It can be verified that the number of vertices of $T_{\left(A\left(n\right),a\right)}^{\left(j\right)}$ can be recursively defined by the relation

$$\left| V(T_{(A(n),a)}^{(j)}) \right| = \left| V(T_{(A(n-1),a)}^{(j)}) \right| + (1+j) .$$

Also the edges of $T_{\left(A\left(n\right),a\right)}^{\left(j\right)}$ can be defined by the relation

$$\left| E(T_{(A(n),a)}^{(j)}) \right| = \left| E(T_{(A(n-1),a)}^{(j)}) \right| + (1+j).$$

Because of the above relation, we define the relation between two successive trees $T_{(A(n-l),a)}^{(j)}$ and $T_{(A(n),a)}^{(j)}$ as

$$\left|T_{(A(n),a)}^{(j)}\right|\Theta\left|T_{(A(n-1),a)}^{(j)}\right| = 1 + j \text{,}$$

where Θ denote the difference between the number of vertices (edges) of $T^{(j)}_{(A(n-l),a)}$ and $T^{(j)}_{(A(n),a)}$.

Let us assume that $|E(S_1)| = a = q_1$, $|E(S_2)| = a + j = q_2$, $|E(S_3)| = a + 2j = q_3$,..., and $|E(S_n)| = a + (n-1) j = q_n$.

For an example a general tree $T^{(1)}_{(A(n),3)}$ is as shown in figure 1.

147

Total number of edges in $T^{(j)}_{(A(n),a)}$ is $q = \frac{n(2a + (n-1)j)}{2} + (n-1)$, $n \ge 1$,

where (n-1) denotes the number of edges in the base path from which the stars are hanging.

We also denote the labeling of node v in the tree as l (v). Here for the tree $T^{(j)}_{(A(n),a)}$ we assign the labeling as follows.

$$R (2): l (s_{2m+1}) = l (s_{2m-1}) + (j (2m-1) + 1 + a), m \ge 1.$$

$$R (3): l (s_{2m+2}) = l (s_{2m}) - (2mj + 1 + a), m \ge 1.$$

$$R (4): l (c_{2m+1}) = l (c_{2m-1}) - (j (2m-1) + 1 + a), m \ge 1.$$

R (5): $l(c_{2m+2}) = l(c_{2m}) + (2mj + 1 + a), m \ge 1.$

R (1): $l(s_1) = 0; l(c_1) = q; l(c_2) = a, l(s_2) = q-a.$

Let the free leaves of growing mth star of $T_{(A(n),a)}^{(j)}$ at s_m be f_1^m , f_2^m ... f_k^m , where k = a + (m-1) j-1.

Let the free leaves of S_1 are labeled with values 1 to q_1 -1.

Then for $m \ge 1$

The labeling of free leaves of odd stars of S_{2m+1} based on its supporting vertex s_{2m+1} as follows.

R(6)a: labeling of (a+ 2mj-1) free leaves of S_{2m+1} are given by the integers starting from $l(c_{2m}) + 1$ to $(l(c_{2m}) + a+2mj)$ except the value of $l(s_{2m+1})$.

The labeling of free leaves of even stars S_{2m} based on its supporting vertex s_{2m} as follows.

R(6)b: labeling of (a+(2m-1)j-1) free leaves of S_{2m} are given by the integers starting from $(l(c_{2m-1}) - (a+(2m-1)j))$ to $(l(c_{2m-1}) - 1)$ except the value of $l(s_{2m})$.

The edge assignment follows.

The above labeling of edges induces a bijective mapping I_E and I_V as follows.

$$I_{E}: E\left(\frac{T_{(A(n),a)}^{(j)}}{2}\right) \to \{1, 2, 3, ..., \frac{n(|V(S_{1})| + |V(S_{n})|)}{2} + n - 1\}$$
$$I_{V}: V\left(\frac{T_{(A(n),a)}^{(j)}}{2}\right) \to \{0, 1, 2, ..., \frac{n(|V(S_{1})| + |V(S_{n})|)}{2} + n - 1\}$$

and it can be verified easily that it is a graceful labeling for the given tree $\ T^{(j)}_{(A(n),a)}$

from the following vertex and edge assignments tables.

The vertex assignment table:

Labeling of T _n	Labeling of vertices
s ₁	0
c ₁	q
Remaining free leaves of S ₁	1 to a-1
S2	q-a
C ₂	a
Remaining free leaves of S ₂	$\{q-1 \text{ to } (q-q_2) \text{ except } (q-a)\}$
\$ ₃	1+q ₂
C ₃	q-(1+q ₂)
Remaining free leaves of S ₃	$\{(a + 1) \text{ to } (a + q_3) \text{ except}(1+q_2))\}$
s_4	$q-(a+q_3+1)$
C4	a+ q ₃ + 1
Remaining free leaves of S_4	$\{(q-q_2-2) \text{ to } (q-(q_2+q_4+1)\text{ except } (q-(a+q_3+1))\}$
\$ _{2m}	$q-l(c_{2m})$
c _{2m}	$a+q_3+q_5+\ldots+q_{2m-1}+m-1$
Remaining free leaves of S_{2m}	The relation R (6b) assigns the values.
s _{2m+1}	$q_2 + q_4 + \ldots + q_{2m} + m$
c _{2m+1}	$q-l(s_{2m+1})$
Remaining free leaves of S_{2m+1}	The relation R (6a) assigns the values.
s _{2n}	$q - l(c_{2n})$
c _{2n}	$l(c_{2n-2}) + 1 + a + (2n-2)j$
Remaining free leaves of S_{2n}	The relation R (6b) assigns the values.
\$ _{2n+1}	$l(s_{2n-1}) + 1 + a + (2n-1)j$
C _{2n+1}	$q - l(s_{2n+1})$
Remaining free leaves of S _{2n+1}	The relation R (6a) assigns the values.

14

The edge assignment table:

Labeling of T _n	Labeling of edge values	
edge s ₁ c ₁	q	
free leaves of S ₁	q-1 to q-(a-1)	
edge s ₁ s ₂	q-a	
edge s ₂ c ₂	q-2a	
free leaves of S ₂	q -(a+1) to q -(a+ q_2) except (q-2a)	
edge s ₂ s ₃	q-(a+q ₂ +1)	
edge s ₃ c ₃	q-(2q ₂ +2)	
free leaves of S ₃	$q-(a+q_2+2)$ to $q-(a+q_2+q_3+1)$ except $q-2(1+q_2)$	
edge s ₃ s ₄	$q-(a+q_2+q_3+2)$	
edge s ₄ c ₄	q-2(a+q ₃ +1)	
free leaves of S ₄	$q-(a+q_2+q_3+3)$ to $q-(a+q_2+q_3+q_4+2)$ except $q-2(a+q_3+1)$	
edge s _{2m-1} s _{2m}	$q-(a+q_2++q_{2m-1}+2m-2)$	
edge $s_{2m}c_{2m}$	$q-2(a+q_2++q_{2m-1}+m-1)$	
free leaves of S_{2m}	$q-(a+q_2++q_{2m-1}+2m-1)$ to $q-(a+q_2++q_{2m}+2m-2)$ except	
	edge $l(s_{2m}c_{2m})$	
edge $s_{2m}s_{2m+1}$	$q-(a+q_2++q_{2m}+2m-1)$	
edge $s_{2m+1}c_{2m+1}$	$q-2(a+q_2++q_{2m}+m)$	
free leaves of S _{2m+1}	$q-(a+q_2++q_{2m}+2m)$ to $q-(a+q_2++q_{2m+1}+2m-1)$ except	
	edge $l(s_{2m+1}c_{2m+1})$	
edge s _{n-1} s _n	$1+ E(S_n) $	
edge s _n c _n	$ l(s_n)-l(c_n) $	
free leaves of S _n	$ E(S_n) $ to 1 except edge l(s_nc_n)	
Table 2		

We observe that the labeling of S_i 's in which s_{2m+1} , $m \ge 1$ are increasing order and s_{2m} , $m \ge 1$ 2 are decreasing order in relation with q. $l(s_i) + l(c_i) = q$. for any i, and hence it can be observed that the reverse property of $l(s_i)$'s is satisfied for $l(c_i)$'s.

References

C. Huang, A. Kotzig, and A. Rosa, Further results on tree labeling, Util. Math., 21c (1982) [1] 31-48

151 International Journal of Engineering Science, Advanced Computing and Bio-Technology

- G. Sethuraman and J. Jesintha, A new class of graceful rooted trees, J. Disc. Math. Sci. Crypt., 11 [2] (2008) 421-435
- [3] G. Sethuraman and J. Jesintha, Generating new graceful trees, Proc. Inter. Conf. Math. Comput. Sci., July (2008) 67-73
- Gallian, J A A Dynamic Survey of Graceful Labeling, The Electronic Journal of Combinatories, twelfth [4] edition January 2009.
- [5] Michelle Edwards and lea Howard, A survey of graceful trees, Atlantic journal of Mathematics, vol 1(summer 2006) 5-30.