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Abstract: Mean labeling of graphs was discussed in [10] and the concept of odd mean labeling was 
introduced in [9].  k-odd mean labeling and (k, d)-odd mean labeling are introduced and discussed in 
[5], [6], [7].  In this paper, we introduce the concept of  k-even mean labeling and investigate k-even 
mean labeling of Dm,n @ Cn. 
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1. Introduction 
 All graphs in this paper are finite, simple and undirected.  Terms not defined here 
are used in the sense of Harary [8].  The symbols V(G) and E(G) will denote the vertex set 
and edge set of a graph.  Labeled graphs serve as useful models for a broad range of 
applications [1-3]. 
 A graph labeling is an assignment of integers to the vertices or edges or both 
subject to certain conditions.  If the domain of the mapping is the set of vertices (or edges) 
then the labeling is called a vertex labeling (or an edge labeling). 
 Graph labeling was first introduced in the late 1960’s.  Many studies in graph 
labeling refer to Rosa’s research in 1967 [11]. 
 Labeled graphs serve as useful models for a broad range of applications such as X-
ray crystallography, radar, coding theory, astronomy, circuit design and communication 
network addressing.  Particularly interesting applications of graph labeling can be found in 
[4]. 
 Mean labeling of graphs was discussed in [10] and the concept of odd mean 
labeling was introduced in [9].  k-odd mean labeling and (k, d) – odd mean labeling are 
introduced and discussed in [5], [6], [7].  In this paper, we introduce the concept of k-
even mean labeling and here we investigate the k-even mean labeling of Dm,n @ Cn. 

 Throughout this paper, k denotes any positive integer  1.  For brevity, we use  
k-EML for k-even mean labeling. 
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2. Main Results 
2.1. Definition: k-even mean labeling 
 A (p, q) graph G is said to have a k-even mean labeling if there exists a injection   

f : V  {0, 1, 2, ..., 2k + 2(q – 1)} such that the induced map 
*f  : E(G)  {2k, 2k + 2, 2k + 4, ..., 2k + 2(q – 1)} defined by 

*( )f uv  = 
( ) ( )

if  ( ) ( ) is even
2

( ) ( ) 1
if  ( ) ( ) is odd

2

f u f v
f u f v

f u f v
f u f v

 
   


 is a bijection. 

 A graph that admits a k-even mean labeling is called a k-even mean graph. 
2.2. Definition :  
 A dragon is formed by joining the end point of a path  to a cycle. In fact, it is the 
one-point union of the end point of a path to a vertex of a cycle.  Koh et al. call these 
tadpoles. Kim and Park call them kites [4].  

Let  Dm,n  denote the one-point union of the end point of the path Pm to a vertex 
of a cycle Cn and  Dm,n @ Cn  denote the graph obtained by the one-point union of the end 
point of the dragon Dm,n to a vertex of a cycle Cn . 

2.3. Theorem 

 Dm,n @ Cn, n  0 (mod 4) is a k-even mean graph for any k and m > 2. 
Proof 

 Let V(Dm,n @ Cn) = {vi, 1  i  n + m – 2}  {vi', 1  i  n} and 

  E(Dm,n @ Cn) = {ei, 1  i  n + m – 1}  {ei', 1  i  n} (see Fig. 2.1) 
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Fig. 2.1:   Ordinary labeling of Dm,n @ Cn 

 First we label the vertices of Dm,n @ Cn as follows: 

 Define f : V(Dm,n @ Cn)  {0, 1, 2, ..., 2k + 2q – 2} by 
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 For 1  i  2

2

n  , 

  f (vi)  = 2 2 4( 1) 1 if  is odd

2 2 4 2 if  is even

k n i i

k n i i

   
   

 

 For 
2

n   i  n, 

  f (vi)  = 2 4 2 1 if  is odd

2 2( 1) 4 1 if  is even

k i n i

k n i i

  
    

 

 For n + 1  i  n + m – 2, 

  f (vi)  = 2k + 2(i – 1) + 1 

 For 1  i  
2

n , 

  f (vi')  = 2 2( ) 4( 2) 1 if  is odd

2 2( ) 1 4( 2) if  is even

k n m i i

k n m i i

    
     

 

 For 2

2

n    i  n, 

  f (vi')  = 2 2(3 ) 4 if  is odd

2 2(3 ) 3 4 if  is even

k n m i i

k n m i i

  
    

 

Then the induced edge labels are 

  *( )if e   = 2 2 4 , 1
2

2
2 4 2 2,

2

n
k n i i

n
k i n i n

    
      


 

 For n + 1  i  n + m – 1, 

  *( )if e   = 2k + 2i – 2 

  *( ')if e   = 2 2( ) 4( 1) 2, 1
2

2
2 2(3 ) 4 ,

2

n
k n m i i

n
k n m i i n

       
      


 

 Therefore, *f (E(Dm,n @ Cn) = {2k, 2k + 2, 2k + 4, ..., 2k + 2q – 2}.  So, f is a  k-

even mean labeling and hence, Dm,n @ Cn, n  0 (mod 4) is a k-even mean graph for any k. 

7-EML of D4,8 @ C8 is shown in Fig. 2.2. 
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Fig. 2.2:    7-EML of D4,8 @ C8 

2.4. Theorem 

 Dm,n @ Cn, n  1 (mod 4) is a k-even mean graph for any k and m > 2. 

Proof 

 Let V(Dm,n @ Cn) = {vi, 1  i  n + m – 2}  {vi', 1  i  n} and 

  E(Dm,n @ Cn) = {ei, 1  i  n + m – 1}  {ei', 1  i  n} (see Fig. 2.1) 

 First we label the vertices of Dm,n @ Cn as follows: 

 Define f : V(Dm,n @ Cn)  {0, 1, 2, ..., 2k + 2q – 2} by 

 For 1  i  3

2

n  , 

  f (vi)  = 2k + 2n – 4i – 2 

 For 1

2

n    i  n – 1, 

  f (vi)  = 2 4 2 1 if  is odd

2 4 2 1 if  is even

k i n i

k i n i

  
   

 

  f (vn)  = 2k + 2n – 2 

 For n + 1  i  n + m – 2, 

  f (vi)  = 2k + 2i – 1 

 For 1  i  1

2

n  , 

  f (vi')  = 2 2( ) 4( 2) 1 if  is odd

2 2( ) 4( 2) 1 if  is even

k n m i i

k n m i i

    
     

 

 For 3

2

n    i  n, 

  f (vi')  = 2k + 2(3n + m) – 4i + 2 
Then the induced edge labels are 
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  *( )if e   = 
1

2 2 4 , 1
2

1
2 2(2 ) 2,

2

n
k n i i

n
k i n i n

    
      


 

 For n + 1  i  n + m – 1, 
  *( )if e   = 2k + 2i – 2 

  *( ')if e   = 
1

2 2( ) 4( 1) 2, 1
2

3
2 2(3 ) 4 ,

2

n
k n m i i

n
k n m i i n

       
      


 

 Therefore, *f (E(Dm,n @ Cn)) = {2k, 2k + 2, 2k + 4, ..., 2k + 2q – 2}.  So, f is a k-

even mean labeling and hence, Dm,n @ Cn, n  1 (mod 4) is a k-even mean graph for any k. 
7-EML of D5,5 @ C5 is shown in Fig. 2.3. 
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Fig. 2.3:    7-EML of D5,5 @ C5 

 
3-EML of D3,9 @ C9 is shown in Fig. 2.4. 
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Fig. 2.4:    3-EML of D3,9 @ C9 

 
2.5. Theorem 

 Dm,n @ Cn, n  2 (mod 4) is a k-even mean graph for any k when n > 6 and         
m > 2. 

Proof 

 Let V(Dm,n @ Cn) = {vi, 1  i  n + m – 2}  {vi', 1  i  n} and 
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  E(Dm,n @ Cn) = {ei, 1  i  n + m – 1}  {ei', 1  i  n} (see Fig. 2.1) 

 First we label the vertices of Dm,n @ Cn as follows: 

 Define f : V(Dm,n @ Cn)  {0, 1, 2, ..., 2k + 2q – 2} by 

     f (v1) = 2k + 2n – 3 

 For 2  i  2

2

n  , 

      f(vi) = 2k + 2(i – 3) + 1 

          
2

nf v
 
 
 

  = 2k + n – 6 

         
2

2

nf v 

 
 
 

= 2k + n – 2 

 For 4

2

n    i  n – 2, 

     f (vi) = 2k + 2(i – 2) + 1 

  f (vn-1) = 2k + 2n – 6 

    f (vn) = 2k + 2n – 2 

 For n + 1  i  n + m – 2, 

  f (vi) = 2k + 2i – 1 

 For 1  i  4

2

n  , 

  f (vi')        = 2k + 2(n + m) + 2i – 5 

  
2

2

'nf v 

 
 
 

  = 2k + 3n + 2m – 8 

  
2

'nf v
 
 
 

     = 2k + 3n + 2m – 4 

 For 2

2

n    i  n – 3, 

  f (vi') = 2k + 2(n + m) + 2(i – 2) + 1 

  f (vn-2') = 2k + 2(2n + m) – 8 

  f (vn-1') = 2k + 2(2n + m) – 4 

  f (vn') = 2k + 2(2n + m) – 5 

Then the induced edge labels are 

  *
1( )f e  = 2k + 2n – 2 
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  *
2( )f e  = 2k + n – 2 

For 3  i  2

2

n  , 

   f *(ei) = 2k + 2i – 6 

For 4

2

n    i  n, 

 *( )if e   = 2k + 2i – 4 

For n + 1  i  n + m – 1, 

 *( )if e   = 2k + 2i – 2 

For 1  i  2

2

n  , 

 *( ')if e   = 2k + 2(n + m) + 2(i – 1) – 2 

For 
2

n   i  n – 1, 

 *( ')if e   = 2k + 2(n + m) + 2i – 2 

 *( ')nf e   = 2k + 3n + 2m – 4 

Therefore, *f (E(Dm,n @ Cn) = {2k, 2k + 2, 2k + 4, ..., 2k + 2q – 2}.  So, f is a  k-

even mean labeling and hence, Dm,n @ Cn, n  2 (mod 4) is a k-even mean graph for any k 
when n > 6. 
6-EML of D4,10 @ C10 is shown in Fig. 2.5. 
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Fig. 2.5:    6-EML of D4,10 @ C10 

 

2.6. Theorem 

 Dm,n @ Cn, n  3 (mod 4) is a k-even mean graph for any k and m > 2. 
Proof 

 Let V(Dm,n @ Cn) = {vi, 1  i  n + m – 2}  {vi', 1  i  n} and 
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  E(Dm,n @ Cn) = {ei, 1  i  n + m – 1}  {ei', 1  i  n} (see Fig. 2.1) 
 First we label the vertices of Dm,n @ Cn as follows: 

 Define f : V(Dm,n @ Cn)  {0, 1, 2, ..., 2k + 2q – 2} by 

 For 1  i  3

2

n  , 

        f (vi)    = 2k + 2i – 3 

  
1

2

nf v 

 
 
 

  = 2k + n – 5 

  
1

2

nf v 

 
 
 

  = 2k + n – 1 

 For 3

2

n    i  n + m – 2, 

  f (vi)  = 2k + 2i – 1 

 For 1  i  3

2

n  , 

  f (vi')  = 2k + 2(n + m) + 2i – 5 

  
1

2

'nf v 

 
 
 

  = 2k + 3n + 2m – 7 

  
1

2

'nf v 

 
 
 

  = 2k + 3n + 2m – 3 

 For 3

2

n    i  n – 1, 

  f (vi')  = 2k + 2(n + m) + 2(i – 2) + 1 

  f (vn')  = 2k + 2(2n + m) – 4 

Then the induced edge labels are 

  *
1( )f e   = 2k + n – 1 

  *( )if e  = 
1

2 2 4, 2
2

3
2 2 2, 1

2

n
k i i

n
k i i n m

    
       


 

  *( ')if e  = 
1

2 2( ) 2 4, 1
2

1
2 2( ) 2 2, 1

2

n
k n m i i

n
k n m i i n

      
        

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  *( ')nf e   = 2k + 3n + 2m – 2 

 Therefore, *f (E(Dm,n @ Cn)) = {2k, 2k + 2, 2k + 4, ..., 2k + 2q – 2}.  So, f is a k-

even mean labeling and hence, Dm,n @ Cn, n  3 (mod 4) is a k-even mean graph for any k. 

2-EML of D3,11 @ C11 is shown in Fig. 2.6. 
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Fig. 2.6:    2-EML of D3,11 @ C11 
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