International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 3, July –September 2010, pp. 129-136

Just Excellent Graphs

M. Yamuna¹, N. Sridharan²

¹SAS, VIT University, Vellore, India – 632 014 ²Department of Mathematics, Alagappa University, Karaikudi, India–630 003 Email: ¹myamuna@vit.ac.in; ²math_sridhar@yahoo.co.in

Abstract: A graph G is said to be excellent, if every vertex of G belongs to a γ - set. In this paper, we introduce a new class of graphs, called just excellent graphs and initiate a study on this class. A graph G is said to be just excellent if to each $u \in V$, there is a unique γ - set of G containing u. We obtain a necessary and sufficient condition for a graph to be just excellent. We find an upper bound for the domination number of a just excellent graph. If G is just excellent and γ (G) attains this upper bound, then we show that G is Hamiltonian. We show that every just excellent graph contains no cut vertex. We also prove that every graph is an induced subgraph of a just excellent graph.

Key words: Domination, Level vertex, Excellent graph, Just excellent graph.

Introduction

We consider only simple undirected graphs. For graph theoretic terminologies we refer to [1]. Let G = (V, E) be a graph. A set $D \subseteq V$ is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set with cardinality $\gamma(G)$ is called γ - set of G. For information on domination refer to [2] and [3].

A graph G is said to be excellent, if every vertex of G belongs to a γ - set. The domatic number d(G) of a graph G is defined to be the maximum number of elements in a partition of V(G) into dominating sets.

Let $u \in V(G)$. Then $\gamma^{\mu}(G, u) = \min \{ |S| : S \subseteq V, S \text{ dominates } G - u \}$. By a $\gamma^{\mu}(G, u)$ - set we mean a set $S \subseteq V$, with $|S| = \gamma^{\mu}(S, G)$, which dominates G - u. For a vertex $u \in V(G)$

- 1. If γ^{u} (*G*, *u*) = γ (*G*), then *u* is said to be a γ level vertex of *G*, or simply a level vertex of *G*.
- 2. If $\gamma^{u}(G, u) = \gamma(G) 1$, then u is said to be a γ no level vertex of G, or simply a nonlevel vertex of G.

The private neighbor set of a vertex v in a γ - set S, denoted by PN(v, S) is $N(v)-N[S-\{v\}]$ and each $u \in PN(v, S)$ is called the private neighbor of v with respect to S.

Received: 23 January, 2010; Revised: 11 March, 2010; Accepted: 25 March, 2010

Definition:

A graph G is said to be just excellent if to each $u \in V$, there is a unique γ - set of G containing u.

Remarks:

- 1. Every just excellent graph is excellent.
- 2. If G is just excellent and $G \neq K_n$, there is no vertex u, such that N [u] is a clique. **Proof**:

If there exist a vertex u such that N [u] is complete, then consider the set γ - set S of G that contains u. Then $(S - u) \cup \{v\}$ is also a γ - set of G, for every $v \in N(u)$. Hence there are atleast two γ - sets of G containing elements of S - u, which is a contradiction.

3. If G is just excellent, then $\delta(u) \ge \frac{n}{\gamma(G)} - 1$.

Proof:

Let $V = S_1 \cup S_2 \cup ... \cup S_m$ be the partition of V into γ - sets of G. Fix one $u \in V$. Assume that $u \in S_j$. Since each S_i is a γ - set, u is adjacent to atleast one vertex of S_i , $i \neq j$. Hence $\delta(u) \ge m - 1 = \frac{n}{\gamma(G)} - 1$.

4. If $G \neq K_2$, $\overline{K_n}$ is just excellent, then $\delta(G) \ge 2$. [In particular any tree $T \neq K_2$ is not just excellent.] **Proof:**

Assume that $G \neq K_2$, $\overline{K_n}$, and u be a pendant vertex of G. Let $N(u) = \{v\}$. Since G is just excellent, there exists a γ - set D of G containing u. As $u \in D$, $v \notin D$. As $G \neq K_2$ and $u \in D$, $|D| \ge 2$. So $(D-u) \cup \{v\}$ is a γ - set of G, which is a contradiction as G is just excellent.

5. Every just excellent graph $G \neq \overline{K_n}$ is connected. **Proof:**

If G is not connected, (and as $G \neq \overline{K_n}$), one of the connected components G_1 , of G contains more than one vertex. As G_1 is also just excellent, and $\gamma(G_1) \leq \frac{|G_1|}{2}$, G_1 has more than one γ - set. Select two γ - sets S_1 and S_2 of G_1 . Fix one γ - set D for $G - G_1$. Then both D $\cup S_1$, and D $\cup S_2$ are γ - sets of G, which is a contradiction as G is just excellent. Hence every just excellent graph is connected.

6. If $G \neq \overline{K_n}$ is just excellent, then $| PN(u, D) | \ge 2$ for all $u \in D$, where D is any γ - set of G. **Proof:**

Let D be a γ - set of G. If $PN(u, D) = \phi$, $(D - u) \cup \{w\}$ is also a γ - set, for any $w \in N(u)$. If |PN(u, D)| = 1, let $PN(u, D) = \{w\}$. Then $(D - u) \cup \{w\}$ is a γ - set of G. In either case, we get a contradiction as G is just excellent. So $|PN(u,D)| \ge 2$, $\forall u \in D$.

7. If G, $G \neq \overline{K_n}$ is just excellent, then Δ (G) $\leq n - 2k + 1$, where $k = \gamma$ (G). **Proof:**

Let $u \in V(G)$. Let S be a γ - set for G which contains u. $|PN(w, S)| \ge 2$, $\forall w \in S$. So u is not adjacent to any of the vertices in $\bigcup_{w \neq u \in S} PN(w,S)$ and

 $deg(u) \leq (n-1) - 2(|S| - 1)$. As this is true for all $u \in V(G)$, $\Delta \leq n-2k+1$.

Fig. 1 Examples of graphs for which $\Delta = n - 2k + 1$.

Examples of graphs which are just excellent

- 1. Every cycle C_{3n} is just excellent.
- 2. Every complete graph K_n is just excellent.
- 3. Given a graph G with $\delta \ge 1$, a graph denoted by G_I is obtained as follows. To each $u \in V(G)$, a clique A_u of order $deg_G(u)$ is obtained, and a bijection $\phi_u: N(u) \rightarrow A_u$ is constructed. $\phi_u(v)$ is denoted by $v', \forall v \in N(u)$. Now $V(G_I) = \bigcup E(A_u) \cup \{u'v' | uv \in E(G), v' \in A_u, u' \in A_v\}$ Then $|V(G_I)| = 2 | E(G) |$ and $|E(G_I)| = \frac{1}{2} \sum_{u \in V} (\deg(u))^2$. The graph G_I is

known as the inflated graph of G. G_I is just excellent when $G = K_n$ or C_{3n} . Also $\gamma(G_I) = n - 1$ if $G = K_n$, $(n \ge 2)$ and $\gamma(G_I) = 2n$ if $G = C_{3n}$.

4. I_n . Let $O_n = u_0$, u_1 , ..., u_{n-1} , u_0 and $I_n = u_0', u_1', ..., u_{n-1}', u_0'$. We combine the cycles O_n and I_n and obtain a graph denoted by Y_n , where $E(Y_n) = \{u_i u_i', u_i u_{i+1}' | 0 \le i \le n-1\} \bigcup E(O_n) \bigcup E(I_n)$. The graphs Y_5 , Y_{10} , Y_{15} , ... are just excellent.

In the following theorem, we obtain a necessary and sufficient condition for a graph to be just excellent.

Theorem 1:

The graph G is just excellent if and only if

1.
$$\gamma(G)$$
 divides n.
2. $d(G) = \frac{n}{\gamma(G)}$
3. G has exactly $\frac{n}{\gamma(G)}$ distinct γ - sets.

Proof:

Let G be just excellent. Let $S_1, S_2, ..., S_m$ be the collection of distinct γ - sets of G. Since G is just excellent, these sets are pair wise disjoint and their union is V(G). So $V = S_1 \cup S_2 \cup ... \cup S_m$ is a partition of V into γ - sets of G. Since $|S_i| = \gamma(G)$, $\forall i = 1, 2, ..., m$ we have

1. domatic number of G = m, and

2.
$$m \gamma(G) = n$$

So both $\gamma(G)$ and d(G) are divisors of n and $d(G) = \frac{n}{\gamma(G)}$. Also, G has exactly

 $m = \frac{n}{\gamma(G)}$ distinct γ - sets. Conversely, assume G to be a graph satisfying the hypothesis of

the theorem. Let $m = \frac{n}{\gamma(G)}$. Let $V = S_1 \cup S_2 \cup ... \cup S_m$ be a decomposition of dominating

sets of G. Now as $\gamma(G)m = n = \sum_{i=1}^{m} |S_i| \ge m\gamma(G)$, for each *i*, S_i is a γ - set of G. Since it is

given that G has exactly m distinct γ - sets, S_1 , S_2 , ..., S_m are the distinct γ - sets of G. Since $V = S_1 \cup S_2 \cup ... \cup S_m$ is a partition, each vertex of V belongs to exactly one S_i . Hence G is just excellent.

Theorem 2:

Let
$$G \neq K_2$$
 be just excellent. Then $\gamma(G) \leq \frac{n}{3}$.

Proof:

Let D be a γ - set of G. Then by remark 6, $| PN(u, D) | \ge 2$, $\forall u \in D$. If $G \neq K_n$ is just excellent, then $d(G) \geq 2$. If possible assume that d(G) = 2. Then $V = S_1 \cup S_2$, where S_1 and S_2 are the distinct γ - sets of G. As $|PN(u, S_1)| \ge 2$, $\forall u \in S_1$ and as $PN(u, S_1) \subseteq S_2$ we get that $|S_2| \ge 2|S_1| = 2\gamma(G)$. But $|S_1| = |S_2|$. Hence $d(G) \ge 3$. Since G is just excellent, $n = \gamma(G) d(G)$. As $d(G) \ge 3$, we get that $\gamma(G) \le \frac{n}{3}$.

Remark:

The bound in the above theorem is sharp since $\gamma(C_{3n}) = n, \forall n \ge 1$.

We now prove that the just excellent graphs for which the upper bound for γ (G) is attained are Hamiltonian.

Theorem 3:

If G is just excellent and
$$\gamma(G) = \frac{n}{3}$$
, then G is Hamiltonian.

Proof:

If $\gamma(G) = \frac{n}{2}$ and G is just excellent, the domatic number d (G) = 3. Let S_1, S_2, S_3

be the distinct γ - sets of *G*. Then $V(G) = S_1 \cup S_2 \cup S_3$. Let $A = \{e \in E(G) \mid e \in \langle S_i \rangle\}$ for some i = 1, 2, 3. Then if H = G - A, then $\gamma(G) \leq \gamma(H)$. As S_1, S_2, S_3 are the dominating sets of H, $\gamma(G) = \gamma(H)$. The sets S_1, S_2, S_3 are the distinct γ - sets of H, and H is just excellent. If H is Hamiltonian, then G is so. Hence it is enough to prove the result by assuming that each S_i is an independent set in G.

By remark 6, if $u \in S_i$, then $|PN(u, S_i)| \ge 2$ and as $u \ne v \in S_i \Longrightarrow PN(u, S_i)$ *PN*(v, S_i) are disjoint, it follows that $\bigcup PN(u, S_i) \ge 2\gamma(G) = |V - S_i|$. and [$u \in S_i$

Since $|V - S_i| = n - \gamma(G) = 3\gamma(G) - \gamma(G) = 2\gamma(G)$. Hence $deg(u) = 2, \forall u \in V(G)$. As $\gamma(G) = \frac{n}{3}, G \neq \overline{K_n}$, and as G is just excellent, G is connected. Since G is connected and 2 - regular, it is a cycle C_n .

Theorem 4:

Every just excellent graph G, contains no cut vertex and hence if $G \neq K_2$, it contains no bridge.

Proof:

If possible assume that G has a cut vertex u. Let H_i be a component of G - u. Let G_i be the induced subgraph $\langle H_1 \cup \{u\} \rangle$ of G and let $G_2 = G - H_1$. Then clearly International Journal of Engineering Science, Advance Computing and Bio-Technology

 $\gamma(G) \leq \gamma(G_1) + \gamma(G_2)$. Let S be the γ - set of G that contains u. Let D be a γ - set of G not containing u. [As $G \neq \overline{K_n}$ and G is just excellent, there is a γ - set of G not containing u]. Let $S_i = S \cap V(G_i)$ and $D_i = D \cap V(G_i)$, i = 1, 2. Since S_i dominates G_i , $|S_i| \geq \gamma(G_i)$. Now, $\gamma(G) = |S| = |S_1| + |S_2| - 1 \geq \gamma(G_1) + \gamma(G_2) - 1$. Thus, $\gamma(G_1) + \gamma(G_2) - 1 \leq \gamma(G) \leq \gamma(G_1) + \gamma(G_2) \dots (1)$.

Assume that $\gamma(G) = \gamma(G_1) + \gamma(G_2)$. Then whenever A and B are γ - sets of G_1 and G_2 respectively, $A \cup B$ is a dominating set of G. So $\gamma(G) \leq |A \cup B| \leq |A| + |B| =$ $\gamma(G_1) + \gamma(G_2)$. As $\gamma(G) = \gamma(G_1) + \gamma(G_2)$, it follows that $A \cup B$ is a γ - set of G...(2). Clearly $u \notin A \cap B$, whenever A and B are γ - sets of G_1 and G_2 respectively. From (2) as G is just excellent, G_1 and G_2 have unique γ - sets. Atleast one of D_1 or D_2 dominates u. Assume that D_1 dominates u. Then D_1 is a γ - set of G_1 . [If D_1 is not a γ - set of G_1 , let A be a γ - set of G_1 . Then $A \cup D_2$ is a dominating set of G and $|A \cup D_2| < |D_1 \cup D_2| =$ $|D| = \gamma(G)$ a contradiction]. Either $|S_1| = \gamma(G_1)$ or $|S_2| = \gamma(G_2)$. [Otherwise |S| = $|S_1| + |S_2| - 1 \ge \gamma(G_1) + 1 + \gamma(G_2) + 1 - 1$, which is a contradiction]. Since D_1 is a γ - set of G_1 and $D_1 \ne S_1$, S_1 is not a γ -set of G_1 . So S_2 is a γ - set of G_2 . Now $D_1 \cup S_2$ and D are γ - sets of G, which is a contradiction as G is just excellent.

Thus, $\gamma(G) \neq \gamma(G_1) + \gamma(G_2) \dots (3)$

From the relation $|S| = \gamma(G) = \gamma(G_1) + \gamma(G_2) - 1$ and $|S_i| \ge \gamma(G_i)$ we get $|S_i| = \gamma(G_i)$ and $|S_2| = \gamma(G_2)$.

The vertex *u* cannot be a level vertex of both G_1 and G_2 . [If not as D_i dominates $G_i - u$, $|D| = |D_1| + |D_2| = \gamma(G_1) + \gamma(G_2)$, which is a contradiction to (3)].

Also *u* cannot be a nonlevel vertex of both G_i . [If so select $A_i \subseteq V (G_i)$ such that A_i dominates $G_i - u$ and $|A_i| = \gamma(G_i) - 1$. Clearly $u \notin A_i$, and $A_1 \cup A_2 \cup \{w\}$ is a γ - set of *G* for any $w \in N$ [*u*] which is a contradiction as *G* is just excellent]. Let *u* be a level vertex of G_i and a non level vertex of G_2 . Let $B \subseteq V(G_2)$ such that *B* dominates $G_2 - u$, and $|B| = \gamma(G_2) - 1$. As $|S_i| = \gamma(G_i)$, S_i is a γ - set of G_i . Since D_i dominates $G_i - u$ and *u* is a level vertex of G_i , $|D_i| \geq \gamma(G_i)$, $|D_2| \leq \gamma(G_2) - 1$ and D_2 is not a γ - set of G_2 . Therefore D_i dominates *u* and D_i is a γ - set of G_i . Now $S_i \cup B$ and $D_i \cup B$ are γ - sets of *G*, which is a contradiction. In all cases we get a contradiction. Thus *G* has no cut vertex.

Theorem 5:

In a just excellent graph, $G \neq \overline{K_n}$ every vertex u is a level vertex, and also $\mathcal{Y}(G-u) = \mathcal{Y}(G).$ **Proof:**

Let u be a vertex in G. Then there exist a γ - set of G not containing u. Hence $\gamma(G - u) \leq \gamma(G)$. We claim that $\gamma(G - u) = \gamma(G)$. If possible assume that $\gamma(G-u) < \gamma(G)$. So $G \neq K_n$. Let S be a γ -set for G-u. Then $S \cup \{v\}$ is a γ -set for G, $\forall v \in N[u]$. As, G is connected, N[u] contains at least two vertices. So $S \cup \{u\}$ and $S \cup \{v\}$ are γ - sets for G for all $v \in N(u)$, a contradiction as G is just excellent. So $\gamma(G-u) = \gamma(G)$. If $\gamma(G, u) < \gamma(G)$, let S be a $\gamma(G, u)$ - set. If $u \in S$, then S is also a dominating set for G, which is a contradiction. If $u \notin S$, then S is a γ - set for G - uand $\gamma(G - u) < \gamma(G)$ which is also a contradiction. Thus, $\gamma^{u}(G, u) = \gamma(G)$.

The converse of the above theorem need not be true. For example in C_{3n+2} , every vertex is a level vertex, but C_{3n+2} is not just excellent.

Theorem 6:

Let S_1 , S_2 , S_3 be the distinct γ - sets of C_{3n} . Then

1. If $A \subset (E(\overline{C_{3n}}))$ such that for every edge $e \in A$, e has both the end vertices in S_1 , then $G = C_{3n} + A$ is just excellent. Further d(G) = 3.

If $u \in S_i$ and $v \in S_j$, $j \neq i$, then $C_{3n} + uv$ is not just excellent, where $uv \notin E(C_n)$. 2. **Proof:**

Let $\{v_0, v_2, ..., v_{3n-1}\}$ be the vertices taken in clockwise order on the cycle C_{3n} . Without loss of generality let $S_i = \{ v_{3k+i} | k = 0, 1, ..., n-1 \}$ where i = 1, 2, 3 (under addition modulo 3n). Let D be a γ - set of G. If $D \cap S_1 = \phi$, then D is a γ - set of C_{3n} also. So in this case $\gamma(G) = \gamma(C_{3n}) = n$ and $D = S_2$ or S_3 . If $D \cap S_1 \neq \phi$, we claim that $D = S_1$.

Assume that $v_{3t} \in D$, but $v_{3(t+1)} \notin D$. D must contain at least one vertex from each of the subsets { $v_i \mid j = 3t + 1, 3t + 2$ }, { $u_i \mid j = 3(t + k), 3(t + k) + 1, 3(t + k) + 2$ }, where k = 1, 2, ..., n - 1 in order to dominate the vertices $v_{3(t+k)+1}$ and v_{3t+2} . As D also contains v_{3t} , |D| > n a contradiction as $\gamma(G) \leq \gamma(C_{3n}) = n$. So $v_{3t} \in D \Longrightarrow v_{3(t+1)} \in D$ and hence $S_1 \subseteq D$. As $\gamma(G) \leq \gamma(C_{3n})$, $D = S_1$. Then S_1, S_2, S_3 are the only γ - sets of G and hence G is just excellent and d (G) = 3.

Let $u \in S_i$ and $v \in S_j$, $i \neq j$ and $uv \notin E(C_n)$. Let $j = i + 1 \pmod{3}$. Let $u = v_{3t+1}$ and $v = v_{3t+j}$. Then S_j and $(S_j - v_{3t+j}) \cup \{v_{3t+i+2}\}$ are γ -sets of $G = C_n + uv$. Hence G is not just excellent.

Theorem 7:

Every graph is an induced subgraph of a just excellent graph.

Proof:

Let G be the given graph. If G is just excellent, then there is nothing to prove. Assume that G is not just excellent. Let $V(G) = \{v_1, v_2, ..., v_n\}$. Consider the cycle C_{3n} . It is just excellent. Let S_1 , S_2 , S_3 be the distinct γ - sets of C_{3n} . Label the vertices of S_1 by u_1 , u_2 , ..., u_n . Now in C_{3n} we add edges $u_i u_j$ if and only if $v_i v_j$ is an edge in G. Let the resulting graph be H. Then the induced subgraph $\langle S_1 \rangle$ in H is isomorphic to G. By theorem 3, H is just excellent and $\gamma(H) = n$. Thus, the given graph G is an induced subgraph of a just excellent graph H. For example consider the tree in Fig. 2(a). It is not just excellent. This tree can be imbedded in a just excellent graph G as seen in Fig. 2(b).

References:

[1] R. Balakrishnan and K. Rangenathan, A text book of graph theory, Springer (2000).

- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of domination in graphs*, Marcel Debher Inc, 1998.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in graphs, Advanced topics*, Marcel Debher Inc, 1998.
- [4] M. Yamuna, Ph. D Thesis, Excellent Just Excellent Very Excellent Graphs, Alagappa University, Dec – 2003.