International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 3, July –September 2010, pp. 129-136

Just Excellent Graphs

M. Yamuna1 , N. Sridharan2

1 *SAS, VIT University, Vellore, India – 632 014* **2** *Department of Mathematics, Alagappa University, Karaikudi, India–630 003* Email: **¹** myamuna@vit.ac.in; **²** math_sridhar@yahoo.co.in

Abstract: *A graph G is said to be excellent, if every vertex of G belongs to a* γ *- set. In this paper, we introduce a new class of graphs, called just excellent graphs and initiate a study on this class. A graph G* is said to be just excellent if to each $u \in V$, there is a unique γ - set of G containing u. We obtain a *necessary and sufficient condition for a graph to be just excellent. We find an upper bound for the domination number of a just excellent graph. If G is just excellent and (G) attains this upper bound, then we show that G is Hamiltonian. We show that every just excellent graph contains no cut vertex. We also prove that every graph is an induced subgraph of a just excellent graph.*

Key words: Domination, Level vertex, Excellent graph, Just excellent graph.

Introduction

We consider only simple undirected graphs. For graph theoretic terminologies we refer to $[1]$. Let $G = (V, E)$ be a graph. A set $D \subseteq V$ is a dominating set if every vertex in *V − D* is adjacent to some vertex in *D*. The domination number γ (G) of G is the minimum cardinality of a dominating set. A dominating set with cardinality γ (G) is called γ - set of G. For information on domination refer to [2] and [3].

A graph *G* is said to be excellent, if every vertex of G belongs to a γ - set. The domatic number *d (G)* of a graph G is defined to be the maximum number of elements in a partition of *V (G)* into dominating sets.

Let $u \in V(G)$. Then $\gamma^u(G, u) = min \{ |S| : S \subseteq V, S \text{ dominates } G - u \}$. By a $\chi^{\mu}(\mathcal{G}, u)$ - set we mean a set *S* \subseteq *V*, with $|S| = \chi^{\mu}(\mathcal{S}, \mathcal{G})$, which dominates $G - u$. For a vertex $u \in V(G)$

- 1. If γ^u (G, u) = γ (G), then *u* is said to be a γ level vertex of G, or simply a level vertex of *G*.
- 2. If $\gamma^{\mu}(G, u) = \gamma(G) 1$, then u is said to be a γ no level vertex of *G*, or simply a nonlevel vertex of *G*.

The private neighbor set of a vertex ν in a γ - set *S*, denoted by $PN(\nu, S)$ is $N(\nu) - N[S-\{\nu\}]$ and each $u \in PN$ (v, S) is called the private neighbor of v with respect to *S*.

Received: 23 January, 2010; Revised: 11 March, 2010; Accepted: 25 March, 2010

Definition:

A graph G is said to be just excellent if to each $u \in V$ *, there is a unique* γ *- set of G containing u.*

Remarks:

- 1. *Every just excellent graph is excellent*.
- 2. If G is just excellent and $G \neq K_n$, there is no vertex u, such that $N[u]$ is a clique. **Proof**:

If there exist a vertex u such that N [u] is complete, then consider the set γ – set *S* of *G* that contains *u*. Then $(S - u) \cup \{v\}$ is also a γ - set of *G*, for every $v \in N$ (*u*). Hence there are atleast two γ -sets of *G* containing elements of *S − u*, which is a contradiction.

3. If G is just excellent, then $\delta(u) \ge \frac{n}{\gamma(G)} - 1$ $\geq \frac{n}{\gamma(G)} - 1$.

Proof:

Let $V = S_1 \cup S_2 \cup ... \cup S_m$ be the partition of *V* into γ - sets of *G*. Fix one $u \in V$. Assume that $u \in S_j$. Since each S_i is a γ - set, *u* is adjacent to atleast one vertex of S_i , $i \neq j$. Hence $\delta(u) \geq m-1 = \frac{n}{\gamma(G)} - 1$ $\geq m-1=\frac{n}{\gamma(G)}-1$.

4. If $G \neq K_2$, $\overline{K_n}$ *is just excellent, then* $\delta(G) \geq 2$. [*In particular any tree* $T \neq K_2$ *is not just excellent.]*

Proof:

Assume that $G \neq K_2$, $\overline{K_n}$, and *u* be a pendant vertex of *G*. Let $N(u) = \{ v \}$. Since *G* is just excellent, there exists a γ - set *D* of *G* containing *u*. As $u \in D$, $\nu \notin D$. As $G \neq K_2$ and $u \in D$, $|D| \geq 2$. So $(D-u) \cup \{v\}$ is a γ - set of *G*, which is a contradiction as *G* is just excellent.

5. *Every just excellent graph* $G \neq \overline{K_n}$ *is connected.* **Proof:**

If *G* is not connected, (and as $G \neq \overline{K_n}$), one of the connected components G_i , of G contains more than one vertex. As G_i is also just excellent, and $\gamma(G_1) \leq \frac{|G_1|}{2}$, G_1 has more than one γ - set. Select two γ - sets S_1 and S_2 of *G₁*. Fix one γ - set *D* for *G* – *G₁*. Then both $D \cup S_1$, and $D \cup S_2$ are γ - sets of *G*, which is a contradiction as *G* is just excellent. Hence every just excellent graph is connected.

6. *If* $G \neq \overline{K_n}$ *is just excellent, then* | *PN* (*u, D*) | \geq 2 for all $u \in D$, where D is any *- set of G.* **Proof:**

Let *D* be a γ - set of *G*. If *PN*(*u*, *D*) = ϕ , (*D* – *u*) \cup { *w* } is also a γ - set, for any $w \in N(u)$. If $|PN(u, D)| = 1$, let $PN(u, D) = \{w\}$. Then $(D - u) \cup \{w\}$ is a γ - set of *G*. In either case, we get a contradiction as *G* is just excellent. So $|PN(u,D)| \geq 2, \forall u \in D.$

7. *If G, G* $\neq \overline{K_n}$ *is just excellent, then* $\Delta(G) \leq n - 2k + 1$ *, where* $k = \gamma(G)$ *.* **Proof:**

Let $u \in V(G)$. Let S be a γ - set for *G* which contains *u*. $|PN(w, S)| \geq 2$, $\forall w \in S$. So *u* is not adjacent to any of the vertices in $w \neq u \in S$ $\bigcup_{a} PN(w, S)$ and

deg(u) ≤ (*n* − 1) − 2(| S | − 1). As this is true for all $u \in V(G)$, Δ ≤ *n*−2k+1.

Fig. 1 Examples of graphs for which $\Delta = n - 2k + 1$.

Examples of graphs which are just excellent

- 1. Every cycle C_{3n} is just excellent.
- 2. Every complete graph K_n is just excellent.
- 3. Given a graph *G* with $\delta \geq 1$, a graph denoted by G_i is obtained as follows. To each $u \in V(G)$, a clique A_u of order $deg_G(u)$ is obtained, and a bijection $\phi_u : N(u) \to A_u$ is constructed. $\phi_u(v)$ is denoted by v' , $\forall v \in N(u)$. Now $V(G_I) = \bigcup E(A_u) \cup \{ u'v' | u v \in E(G), v' \in A_u, u' \in A_v \}$ Then $|V(G_I)| = 2 |E(G)|$ and $|E(G_I)| = \frac{1}{2} \sum_{u \in V} (deg(u))^2$ $E(G_I)$ = $\frac{1}{2}$ \sum (deg (*u* \in $=\frac{1}{2}\sum_{i=1}^{\infty}(\deg(u))^{2}$. The graph G_{I} is

known as the inflated graph of *G*. G_I is just excellent when $G = K_n$ or C_{3n} . Also γ (G_I) = n – 1 if G = K_n, (n \geq 2) and γ (G_I) = 2n if G = C_{3n}.

4. *I_n*. Let $O_n = u_0, u_1, ..., u_{n-1}, u_0$ and $I_n = u_0', u_1', ..., u_{n-1}, u_0'$. We combine the cycles O_n and I_n and obtain a graph denoted by Y_n , where $E(Y_n) = \{ u_i u_i', u_i u_{i+1} | 0 \le i \le n-1 \} \cup E(O_n) \cup E(I_n)$. The graphs Y_5 , *Y10, Y15*, ... are just excellent.

In the following theorem, we obtain a necessary and sufficient condition for a graph to be just excellent.

Theorem 1:

The graph G is just excellent if and only if

\n- 1.
$$
\gamma(G)
$$
 divides n.
\n- 2. $d(G) = \frac{n}{\gamma(G)}$
\n- 3. G has exactly $\frac{n}{\gamma(G)}$ distinct γ -sets.
\n

Proof:

Let *G* be just excellent. Let S_1 , S_2 , ..., S_m be the collection of distinct γ - sets of *G*. Since *G* is just excellent, these sets are pair wise disjoint and their union is *V (G)*. So $V = S_1 \cup S_2 \cup ... \cup S_m$ is a partition of *V* into γ -sets of G. Since $|S_i| = \gamma(G)$, \forall *i* = 1, 2, ...,*m* we have

1. domatic number of *G = m*, and

$$
2. m \mathcal{V}(G) = n.
$$

So both γ (G) and *d* (G) are divisors of *n* and $d(G) = \frac{n}{\gamma(G)}$. Also, G has exactly

 $m = \frac{n}{\gamma(G)}$ distinct γ - sets. Conversely, assume *G* to be a graph satisfying the hypothesis of

the theorem. Let $m = \frac{n}{\gamma(G)}$. Let $V = S_1 \cup S_2 \cup ... \cup S_m$ be a decomposition of dominating

sets of *G*. Now as 1 (G) $m=n=\sum |S_i|\geq m\gamma(G)$ *m i i* $\gamma(G)$ *m*=*n*= $\sum |S_i| \geq m\gamma(G)$ $=$ $=n=\sum_{i=1}^{n} |S_i| \geq m\gamma(G)$, for each *i*, S_i is a γ - set of *G*. Since it is

given that *G* has exactly m distinct γ - sets, S_1 , S_2 , ..., S_m are the distinct γ - sets of *G*. Since $V = S_1 \cup S_2 \cup ... \cup S_m$ is a partition, each vertex of *V* belongs to exactly one *S_i*. Hence *G* is just excellent.

Theorem 2:

Let
$$
G \neq K_2
$$
 be just excellent. Then $\gamma(G) \leq \frac{n}{3}$.

Proof:

Let *D* be a γ - set of G. Then by remark 6, | *PN*(*u*, *D*) | \geq 2, \forall *u* \in *D*. If $G \neq K_n$ is just excellent, then $d(G) \geq 2$. If possible assume that $d(G) = 2$. Then $V = S_1 \cup S_2$, where S_1 and S_2 are the distinct γ -sets of G. As $|PN (u, S_1)| \geq 2$, $\forall u \in S_1$ and as *PN*(u, S_1) $\subseteq S_2$ we get that $|S_2| \ge 2|S_1| = 2\gamma$ (G). But $|S_1| = |S_2|$. Hence $d(G) \geq 3$. Since *G* is just excellent, $n = \mathcal{N}(G)$ *d*(*G*). As *d*(*G*) ≥ 3 , we get that $\gamma(G) \leq \frac{n}{3}$.

Remark:

The bound in the above theorem is sharp since $\gamma(C_{3n}) = n, \forall n \ge 1$.

We now prove that the just excellent graphs for which the upper bound for γ (G) is attained are Hamiltonian.

Theorem 3:

If G is just excellent and
$$
\gamma(G) = \frac{n}{3}
$$
, then G is Hamiltonian.

Proof:

If $\gamma(G) = \frac{n}{3}$ and *G* is just excellent, the domatic number *d* (*G*) = 3. Let *S₁*, *S₂*, *S₃*

be the distinct γ - sets of *G*. Then V (*G*) = $S_1 \cup S_2 \cup S_3$. Let $A = \{e \in E \mid G) \mid e \in \langle S_i \rangle\}$ for some $i = 1, 2, 3$. Then if $H = G - A$, then $\gamma(G) \leq \gamma(H)$. As S_1, S_2, S_3 are the dominating sets of *H*, γ (*G*) = γ (*H*). The sets *S₁*, *S₂*, *S₃* are the distinct γ - sets of *H*, and *H* is just excellent. If *H* is Hamiltonian, then *G* is so. Hence it is enough to prove the result by assuming that each S_i is an independent set in G .

By remark 6, if $u \in S_i$, then $|PN(u, S_i)| \ge 2$ and as $u \ne v \in S_i \implies PN(u, S_i)$ and *PN*(*v*, *S_i*) are disjoint, it follows that $\bigcup_{G} PN(u, S_i) \geq 2\gamma(G) = |V - S_i|$. $u \in S_i$

Since $|V - S_i| = n - \gamma(G) = 3\gamma(G) - \gamma(G) = 2\gamma(G)$]. Hence *deg* (*u*) = 2, $\forall u \in V(G)$. As $\gamma(G) = \frac{n}{3}$, $G \neq \overline{K_n}$, and as *G* is just excellent, *G* is connected. Since *G* is connected and 2 - regular, it is a cycle *Cn*.

Theorem 4:

Every just excellent graph G, contains no cut vertex and hence if $G \neq K_2$ *, it contains no bridge.*

Proof:

If possible assume that *G* has a cut vertex *u*. Let H_1 be a component of $G - u$. Let G_1 be the induced subgraph $\langle H_1 \cup \{u\} \rangle$ of *G* and let $G_2 = G - H_1$. Then clearly International Journal of Engineering Science, Advance Computing and Bio-Technology

 $\gamma(G) \leq \gamma(G_1) + \gamma(G_2)$. Let *S* be the γ - set of *G* that contains *u*. Let *D* be a γ - set of *G* not containing *u*. [As $G \neq \overline{K_n}$ and *G* is just excellent, there is a γ - set of *G* not containing *u*]. Let $S_i = S \cap V$ (G_i) and $D_i = D \cap V$ (G_i), $i = 1, 2$. Since S_i dominates G_i $| S_i | \ge \gamma(G_i)$. Now, $\gamma(G) = | S | = | S_1 | + | S_2 | - 1 \ge \gamma(G_1) + \gamma(G_2) - 1$. Thus, $\gamma(G_1) + \gamma(G_2) - 1 \leq \gamma(G) \leq \gamma(G_1) + \gamma(G_2)$... (1).

Assume that $\gamma(G) = \gamma(G_1) + \gamma(G_2)$. Then whenever *A* and *B* are γ - sets of G_1 and G_2 respectively, $A \cup B$ is a dominating set of *G*. So $\gamma(G) \leq |A \cup B| \leq |A| + |B| =$ $\gamma(G_i) + \gamma(G_2)$. As $\gamma(G) = \gamma(G_i) + \gamma(G_2)$, it follows that $A \cup B$ is a γ - set of *G*...(2). Clearly $u \notin A \cap B$, whenever *A* and *B* are γ - sets of G_1 and G_2 respectively. From (2) as *G* is just excellent, *G₁* and *G₂* have unique γ - sets. Atleast one of D_1 or D_2 dominates *u*. Assume that D_1 dominates *u*. Then D_1 is a γ - set of G_1 . [If D_1 is not a γ - set of G_1 , let A be a γ - set of *G₁*. Then *A* \cup *D₂* is a dominating set of *G* and $|A \cup D_2|$ < $|D_1 \cup D_2|$ = $|D| = \gamma(G)$ a contradiction]. Either $|S_1| = \gamma(G_1)$ or $|S_2| = \gamma(G_2)$. [Otherwise $|S| =$ $|S_1| + |S_2| - 1 \ge \gamma(G_1) + 1 + \gamma(G_2) + 1 - 1$, which is a contradiction]. Since D_1 is a γ - set of G_1 and $D_1 \neq S_1$, S_1 is not a γ -set of G_1 . So S_2 is a γ - set of G_2 . Now $D_1 \cup S_2$ and *D* are γ - sets of *G*, which is a contradiction as *G* is just excellent.

Thus, $\gamma(G) \neq \gamma(G_1) + \gamma(G_2)$... (3)

From the relation $|S| = \gamma(G) = \gamma(G_1) + \gamma(G_2) - 1$ and $|S_i| \geq \gamma(G_i)$ we get $|S_1| = \gamma(G_1)$ and $|S_2| = \gamma(G_2)$.

The vertex *u* cannot be a level vertex of both G_1 and G_2 . [If not as D_i dominates $G_i - u$, $|D| = |D_1| + |D_2| = \gamma(G_1) + \gamma(G_2)$, which is a contradiction to (3)].

Also *u* cannot be a nonlevel vertex of both G_i . [If so select $A_i \subseteq V$ (G_i) such that A_i dominates G_i − *u* and $|A_i| = \gamma(G_i) - 1$. Clearly $u \notin A_i$, and $A_i \cup A_2 \cup \{w\}$ is a γ - set of *G* for any $w \in N[u]$ which is a contradiction as *G* is just excellent]. Let *u* be a level vertex of *G₁* and a non level vertex of *G₂*. Let *B* \subseteq *V(G₂)* such that *B* dominates *G₂* − *u*, and $|B| = \gamma(G_2) - 1$. As $|S_1| = \gamma(G_1)$, S_1 is a γ - set of G_1 . Since D_1 dominates *G₁* − *u* and *u* is a level vertex of *G₁*, $|D_1|$ $\geq \gamma$ (*G₁*), $|D_2|$ $\leq \gamma$ (*G₂*) − *1* and *D₂* is not a γ - set of G_2 . Therefore D_1 dominates *u* and D_1 is a γ - set of G_1 . Now $S_1 \cup B$ and $D_1 \cup B$ are γ - sets of *G*, which is a contradiction. In all cases we get a contradiction. Thus *G* has no cut vertex.

Theorem 5:

In a just excellent graph, $G \neq \overline{K_n}$ *every vertex u is a level vertex, and also* $\gamma(G - u) = \gamma(G)$. **Proof:**

Let *u* be a vertex in *G*. Then there exist a γ - set of *G* not containing *u*. Hence γ (*G − u*) $\leq \gamma$ (*G*). We claim that γ (*G − u*) = γ (*G*). If possible assume that γ (*G − u)* < γ (*G*). So *G* \neq *K_n*. Let *S* be a γ - set for *G − u*. Then *S* \cup { ν } is a γ - set for *G*, $\forall v \in N$ [*u*]. As, *G* is connected, *N* [*u*] contains at least two vertices. So *S* \cup { *u* } and $S \cup \{v\}$ are γ - sets for *G* for all $v \in N(u)$, a contradiction as *G* is just excellent. So γ (*G* − *u*) = γ (*G*). If γ ^{*u*}(*G*, *u*) < γ (*G*), let *S* be a γ ^{*u*}(*G*, *u*) - set . If *u* ∈ *S*, then *S* is also a dominating set for *G*, which is a contradiction. If $u \notin S$, then *S* is a γ - set for *G* − *u* and $\gamma(G - u) < \gamma(G)$ which is also a contradiction. Thus, $\gamma^{\mu}(G, u) = \gamma(G)$.

The converse of the above theorem need not be true. For example in C_{3n+2} , every vertex is a level vertex, but *C3n+2* is not just excellent.

Theorem 6:

Let S_1 , S_2 , S_3 be the distinct γ - sets of C_{3n} . Then

1. If $A \subset (E(\overline{C_{3n}}))$ such that for every edge $e \in A$, e has both the end vertices in S_1 , *then* $G = C_{3n} + A$ *is just excellent. Further d* (G) = 3.

2. If $u \in S_i$ and $v \in S_j$, $j \neq i$, then C_{3n} + uv is not just excellent, where uv $\notin E(C_n)$. **Proof:**

Let $\{v_0, v_2, ..., v_{3n-1}\}$ be the vertices taken in clockwise order on the cycle C_{3n} . Without loss of generality let $S_i = \{ v_{3k+i} | k = 0, 1, ..., n-1 \}$ where $i = 1, 2, 3$ (under addition modulo *3n*). Let *D* be a γ - set of *G*. If $D \cap S_1 = \emptyset$, then *D* is a γ - set of C_{3n} also. So in this case $\gamma(G) = \gamma(G_{3n}) = n$ and $D = S_2$ or S_3 . If $D \cap S_1 \neq \emptyset$, we claim that $D = S_i$.

Assume that $v_{3t} \in D$, but $v_{3(t+1)} \notin D$. *D* must contain at least one vertex from each of the subsets $\{v_j | j = 3t + 1, 3t + 2\}$, $\{u_j | j = 3(t + k), 3(t + k) + 1, 3(t + k) + 2\}$, where $k = 1, 2, ..., n - 1$ in order to dominate the vertices $v_{3(t + k) + 1}$ and $v_{3t + 2}$. As *D* also contains v_{3p} | D | > n a contradiction as γ (G) $\leq \gamma$ (C_{3n}) = n. So $v_{3t} \in D \implies v_{3(t+1)} \in D$ and hence $S_1 \subseteq D$. As $\gamma(G) \leq \gamma(G_{3n})$, $D = S_1$. Then S_1 , S_2 , S_3 are the only γ - sets of *G* and hence *G* is just excellent and d *(G)* = 3.

Let $u \in S_i$ and $v \in S_j$, $i \neq j$ and $uv \notin E(C_n)$. Let $j = i + 1 \pmod{3}$. Let $u = v_{3t+1}$ and $v = v_{3t+j}$. Then S_j and ($S_j - v_{3t+j}$) \cup { v_{3t+i+2} } are γ - sets of $G = C_n + uv$. Hence G is not just excellent.

Theorem 7:

Every graph is an induced subgraph of a just excellent graph.

Proof:

 Let *G* be the given graph. If *G* is just excellent, then there is nothing to prove. Assume that *G* is not just excellent. Let *V* (*G*) = { v_1 , v_2 , ..., v_n }. Consider the cycle C_{3n} . It is just excellent. Let S_1 , S_2 , S_3 be the distinct γ - sets of C_{3n} . Label the vertices of S_1 by u_1 , u_2 , ..., u_n . Now in C_{3n} we add edges u_iu_j if and only if v_iv_j is an edge in *G*. Let the resulting graph be *H*. Then the induced subgraph $\langle S_1 \rangle$ in *H* is isomorphic to *G*. By theorem 3, *H* is just excellent and $\gamma(H) = n$. Thus, the given graph *G* is an induced subgraph of a just excellent graph *H*. For example consider the tree in Fig. 2(a). It is not just excellent. This tree can be imbedded in a just excellent graph G as seen in Fig. 2(b).

References:

[1] R. Balakrishnan and K. Rangenathan, *A text book of graph theory*, Springer (2000).

- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of domination in graphs*, Marcel Debher Inc, 1998.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in graphs, Advanced topics*, Marcel Debher Inc, 1998.
- [4] M. Yamuna, Ph. D Thesis, *Excellent Just Excellent Very Excellent Graphs*, Alagappa University, Dec – 2003.