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Abstract: A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex 
not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric 
dominating set if for every v  VD, there exists at least one eccentric point of v in D. The minimum 
of the cardinalities of the eccentric dominating sets of G is called the eccentric domination number 
ed(G) of G. A partition of V(G) is called eccentric domatic if all its classes are eccentric dominating sets 
in G. The maximum number of classes of an eccentric domatic partition of V(G) is called the eccentric 
domatic number of G and is denoted by ded(G). In this paper, bounds for ded(G) and its exact value for 
some particular classes of graphs are studied. 
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1.Introduction 

 Let G be a finite, simple, undirected graph on n vertices with vertex set V(G) and 
edge set E(G). For graph theoretic terminology and domination concepts refer to Harary 
[4], Buckley and Harary [1] and Haynes, Hedetniemi, and Slater [8].  

Definition 1.1 Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of 

v is the distance to a vertex farthest from v. Thus, e(v) = max {d(u, v) : u  V}. The 
radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is 

the maximum eccentricity. For any connected graph G, r(G)  diam(G)  2r(G). v is a 
central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central 
subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a peripheral  
vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices. 
 For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex of v. 
The set of all eccentric vertices of v is known as the eccentric set E(v) of v. 

Definition 1.2 The open neighborhood N(u) of a vertex v is the set of all vertices adjacent 

to v in G. N[v] = N(v)  {v} is called the closed neighborhood of v. For a vertex v  

V(G), Ni(u) = {u  V(G) : d(u, v) = i} is defined to be the ith neighborhood of v in G.  
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Definition 1.3 [2,8] A set S  V is said to be a dominating set in G, if every vertex in  

VS is adjacent to some vertex in S.  

Definition 1.4 [3] A partition of V(G) is called domatic if all of its classes are dominating 
sets in G. The maximum number of classes of an domatic partition of V(G) is called the 
domatic number of G and is denoted by dd(G). 

Definition: 1.5 [6] A set D  V(G) is an eccentric dominating set if D is a dominating 

set of G and for every  v  V – D, there exists at least one eccentric point of v in D. If D 

is an eccentric dominating set, then every superset D  D is also an eccentric dominating 

set. But D  D is not necessarily an eccentric dominating set.  
An eccentric dominating set D is a minimal eccentric dominating set if no 

proper subset D  D is an eccentric dominating set. 

Definition: 1.6 [6] The eccentric domination number ed(G) of a graph G equals the 

minimum cardinality of an eccentric dominating set. That is, ed(G) = min D, where the 
minimum is taken over D in D, where  D is  the set of all minimal eccentric dominating 
sets of G. 

Obviously, (G)  ed(G). 

Partitioning a given graph into sets such that each of which has some specified 
property has many applications in clustering a communication network. So in this section 
we define a new parameter known as eccentric domatic number of a given graph and 
study that parameter. 

Definition: 1.6 A partition of V(G) is called eccentric domatic if all of its classes are 
eccentric dominating sets in G. The maximum number of classes of an eccentric domatic 
partition of V(G) is called the eccentric domatic number of G and is denoted by ded(G). 

For every graph G, there exists at least one eccentric partition of V(G), namely 
{V(G)}. Therefore, ded(G) is well defined for every graph G. We give results on this 
parameter in section 2. 

In [6], we have established the following results and are needed to study the 
eccentric domatic number of some classes of graphs. 

Theorem:1.1 [6] ed(K,n) = 1. 

Theorem:1.2 [6]  If G is of diameter two ed(G)  1+(G). 

Theorem: 1.3 [6]  ed(Pn) =  n/3, if n = 3k+1, 
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       ed(Pn) =  n/3 +1, if n = 3k or 3k+2. 

Theorem: 1.4[6]  (i) ed(Cn) =  n/2 if n is even. 

                    (ii) ed(Cn) =   n/3 or n/3 +1, if n is odd. 

Theorem: 1.5[6]   ed(C4) = 2, ed(C5) = 3 and ed(Cn) = n/3, n  6. 

 

2. Eccentric domatic number of a graph 

First, we shall give some bounds for the eccentric domatic number of a graph.  

Observation:2.1 If D is an eccentric dominating set in G, then for each v  V  D,        

D  N(v) and D  E(v) are non empty sets. Hence we have, ded(G)  1 + (G) and 

ded(G)   E(v)1min V(G)v    .  

Observation:2.2 If G is a graph on n vertices, then 1  ded(G)  n.  

Now we give some observations, theorems and propositions relating eccentric 
domatic numbers of some classes of graphs. 

Observation:2.3 For n  2, ded(K1,n) = 1. 

Observation:2.4 For n  3, ded(Pn) = 1. 

Observation: 2.5 If G is a tree, ded(G)  2. 

Since every vertex of Kn is an eccentric dominating set the following proposition 
holds. 

Proposition: 2.1 ded(Kn) = n.  

In observation 2.2, both lower and upper bounds are sharp since ded(Kn) = n and    
ded(K1,n) = 1. 

ded(Km,n) is given by the following proposition. 

Proposition: 2.2 For 2  m  n, ded(Km,n) = m. 

Proof: Let V1, V2 be the bipartition classes of Km,n. Consider u  V1, v  V2. Clearly, 

{u,v} is a  ed dominating set. 
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 Let V1 = {u1, u2, …, um}, V2 = {v1, v2, …, vn}.  Then {ui, vi}, i = 1, 2, 3,…, m-1, {um, 

vm, vm+1, …, vn} form an eccentric domatic partition of Km,n. Hence ded(Km,n)  m. On the 

other hand, ded(Km,n)  d(Km,n) = m. Therefore, ded(Km,n) = m. 

Proposition: 2.3 If ded(G)  3, then (G)  2. 

Proof: If ded(G)  3, then every vertex of G has atleast two neighbours. Thus (G)  2. 

Now, we will prove some results related to unique eccentric point graphs. 

If G is an unique eccentric point graph, no vertex of G has more than one 
eccentric vertex hence we have 

Proposition: 2.4 If G is an unique eccentric point graph then ded(G)  2. 

Proposition: 2.5 If G is an unique eccentric point graph such that each vertex is an 
eccentric point of a unique vertex with odd number of vertices then ded(G) = 1. 

Proof: If G is an unique eccentric point graph, ed(G)  n/2. Also G has an odd number 
of vertices. Hence ded(G) = 1. 

Theorem 2.1 If G is an unique eccentric point graph with (G) = 1, then ded(G) = 1. 

Proof: If G is an unique eccentric point graph then ded(G)  2 by Proposition 2.5. Let      

u  V(G) such that deg u = 1, and let v be the support of u in G. Since u is pendent, u 
and v have the same eccentric point w (unique).  
 Now, suppose that ded(G) = 2. Let {D1, D2} be an eccentric domatic partition of G 

and let u  D1. Then v  D2 and w  D2. But v  D2 and D1 is an eccentric dominating 

set implies that w   D1, which is a contradiction. Hence ded(G) = 1. 

Theorem: 2.2 Let n be an even positive integer. Let G be obtained from the complete 
graph Kn by deleting edges of linear factor, then ded(G) = 2. 
Proof: Let u and v be a pair of non-adjacent vertices in G. Then u and v are eccentric to 
each other. Also, G is a unique eccentric point graph and each vertex is an eccentric point 

of exactly one vertex. Therefore, ed(G)  n/2. G is also regular self-centered with 

diameter 2. Consider, D  V(G) such that D = Kn/2. D contains n/2 vertices each vertex 
in V – D is adjacent to atleast one element in D and each element in V – D has its 

eccentric point in D. Hence ed(G) = n/2. Also, there exists only two such partitions. 
Hence, ded(G) = 2. 

In the following two theorems we study the number of domatic partitions of Cn 
and its complement. 
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Theorem: 2.3  (i) ded(Cn) = 2, if n is even. 

(ii) ded(Cn) = 2, if n is odd and n  3m. 
(iii) ded(Cn) = 3, if n = 3m and is odd. 

Proof of (i): Let the cycle Cn be v1 v2 v3…v2k v1. Each vertex of Cn has exactly one eccentric 

vertex and ed(Cn) =  n/2 if n is even. Hence ded(Cn)  2. 
If n = 4, any two adjacent vertices of C4 is an eccentric dominating set of C4. 
Hence ded(C4) = 2. 
Let n = 2k and k > 2. 

case(i)   k-odd. 
 Consider D1 = {v1, v3,…, vk, vk+2, …, v2k-1} and D2 = {v2, v4,…, vk-1, vk+1, …, v2k}. 
This D1 and D2 is are eccentric dominating sets for Cn since they dominates Cn and vi is an 
eccentric point of vi+k. {D1, D2} is an eccentric domatic partition of G. Hence ded(Cn) = 2. 
case(ii)   k even. 
 Let D1 = {v1, v3, …, vk-1, vk+2,vk+4, …, v2k}. D2 ={v2, v4,…, vk, vk+1, vk+3,…, v2k-1}. This 
D1 is an eccentric dominating set for Cn since D1 dominates Cn and vi is an eccentric point 
of vi+k. {D1, D2} is an eccentric domatic partition of G. Hence ded(Cn) = 2. 
Proof of (ii):  Each vertex of Cn has exactly two eccentric vertices and two adjacent 

vertices and ed(Cn) =  n/3 or  n/3 +1, if n is odd. Therefore, ded(Cn)  3. 

 If n = 2k+1, vi  V(G) has vi+k, vi+k+1 as eccentric points. 

case(i)   n = 3m+1, n odd  m is even. 

 Also 3m = 2k  k is a multiple of 3. 
 Consider D = {v1, v4,…, vk+1, vk+3, vk+6, …, v2k-1}. D is an eccentric dominating set 

andD =  n/3 = (Cn). Hence ed(Cn) =   n/3 = m+1. So ded(Cn)  2. VD is also an 
eccentric dominating set. Therefore, ded(Cn) = 2. 

case(ii)  n = 3m+2  3m is odd  m is odd.  
                                             2k = 3m+1 = 3(m–1) + 4 
                                                  k = 3l + 2 
 Consider D = {v1, v4, …, vk–1, vk, vk+3, …, v2k+1}. D is an eccentric dominating set 

with n/3 + 1 vertices and no -dominating set of Cn is an eccentric dominating set of 
Cn. 

Hence ed(Cn) =   n/3 + 1 and as in the previous case ded(Cn) = 2. 

Proof of (iii): When n = 3m, ed(Cn) =  n/3  = (Cn). Each vertex of Cn has exactly two 

eccentric vertices and two adjacent vertices. Therefore, ded(Cn)  3. 

n = 3m, n odd   m odd 

 n = 3m = 2k+1  2k even and 2k = 3m–1 
                                         2k = 3(m–1)+2 
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                                           k = (3(m–1)+2)/2  k = 3l+1 (since m–1 is even) 
 Consider D1 = {v1, v4, v7, …, vk, vk+3, vk+6,…, v2k–1},  

   D2 = {v2, v5, v8, …, vk+1, vk+4, vk+7,…, v2k},  
   D3 = {v3, v6, v9, …, vk+2, vk+5, vk+8,…, v2k+1}. 

Then D1, D2, D3 form an eccentric domatic partition of V(Cn). Hence, ded(Cn) = 3. 

Theorem: 2.4  ded(Cn) = 2 if n  3m, 

ded(Cn) = 3 if n = 3m,  

Proof: We know, ed(C4) = 2, ed(C5) = 3 and ed(Cn) = n/3, n  6 and each vertex 

of Cn has exactly two eccentric vertices when n > 3. Therefore, ded(Cn)  3. 
Case 1: n = 3m 

Let us assume that v1, v2, …, vn, v1 form Cn. Then D1 = {v1, v4, …, v3m-2};  

D2 = {v2, v5, …, v3m-1}; D3 = { v3, v6, …, v3m} form a partition of V(Cn) into 

minimum eccentric dominating sets ofCn. Hence ded(Cn) = 3. 

Case 2: n  3m 

In this case, ded(Cn)  2 since ed(Cn) = n/3  > n/3. 

If n = 3m+1, D = {v1, v4, …, v3m+1} and VD form an eccentric domatic partition 

ofCn. Hence ded(Cn) = 2. 

If n = 3m+2, D = {v1, v4, …, v3m+1, v3m+2} and VD form an eccentric domatic 

partition ofCn. Hence ded(Cn) = 2. 

Next theorem gives the eccentric domatic number of wheels. 

Theorem: 2.5 ded(W3) = 4,  ded(W4) = 2, ded(W5) = 2, ded(W6) = 3, ded(W7) = 2 and ded(Wn) 

= 3, n  8. 

Proof:  W3  K4. Hence, ded(W3) = 4. 
 W4 = K1+C4. Let v1, v2, v3, v4 be the vertices of C4 and v be the central vertex of 
W4. Then {v, v1, v2}, {v3, v4} are eccentric partitions of W4. Hence ded(W4) = 2. 
Similarly, we can prove that ded(W5) = 2, ded(W6) = 3 and ded(W7) = 2. 

 When n  8, Wn = K1+Cn. 
 Let v1, v2, …, vn be the n vertices of Cn, then the central vertex v with any two 
vertices of Cn at distance three or more in Cn or v with any two adjacent vertices of Cn 
form an eccentric dominating set of Wn. Also, any dominating set of Cn is an eccentric 

dominating set of Wn. Hence, ded(Wn) = d(Cn) = 3 for n  8. 

A lower bound for eccentric domatic number is given in the following theorems. 

Theorem: 2.6 If G is of radius greater than two, then ded(G)  n/(n(G). 
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Proof: If G is a graph with radius greater than two, V  N(u), where deg u = (G) is an 

eccentric dominating set. Let D  V(G) with D  n(G), then D is an eccentric 

dominating set. Thus we can take any n/(n(G) disjoint subsets. Hence,             

ded(G)  n/(n(G). 

Theorem: 2.7 If G is self-centered of radius two, then ded(G)  n/(1+(G)). 

Proof: If G is self-centered of radius two, N[u] is an eccentric dominating set for any u  

V(G). Let D  V(G) with D  1+(G), then D is an eccentric dominating set. Thus we 

can take any n/(1+(G)) disjoint subsets as eccentric dominating sets. Hence,        

ded(G)  n/(1+(G)). 

Nordhaus-Gaddum type of results involving the domatic number of G and its 
complement is given in the following theorem. 

Theorem: 2.8 ded(G) + ded( G )  n+1 with equality if and only if G = Kn or nK . 

Proof: ded(G) = 1 and ded( G ) = n when G = Kn or nK . If G  Kn or nK , ed(G)  2. 

Therefore ded(G)  n/2. Thus we see that ded(G) + ded( G )  n. 

Next, we proceed to prove eccentric domatic number of a graph or its 
complement is greater than two when the radius of G is greater than two. 

Theorem: 2.9 Let G be a connected graph with radius greater than two. Then there exists 

a minimal eccentric dominating set D of G with the property that for u  D, N(u)  D 

and V  N(u)  D. 

Proof: Let D be any minimal eccentric dominating set of G. For any u  V(G), V  N(u) 
is an eccentric dominating set of G, but it is not minimal by theorem 2.5.. Hence              

V  N(u)  D. Next we prove that there exists D such that N(u)   D. Since G is of 

radius greater than two D  N[u], since N[u] is not a dominating set of G and D must 
contain vertices which are at distance atleast two. Since D is minimal, N(u) is a subset of 
D if and only if each vertex of N(u) is the support of some pendent vertices. Let Su be the 

set of all such pendent vertices. Take D = (D  N(u))Su. D is a minimal eccentric 
dominating set of G (if x is a pendent vertex and y its support then x and y have same 

eccentric vertex) and N(u)   D. Hence we can form a minimal dominating set D such 

that N(u)   D for any u  D. This proves the theorem. 

Theorem: 2.10 Let G be a connected graph with radius r  2. Then either G or G  has 

atleast two disjoint eccentric dominating sets; that is ded(G) or ded( G ) is  2. 
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Proof: When radius of G is greater than two,  G  is self-centered of diameter two. Hence 

in G  two vertices are at distance two to each other implies that they are eccentric to each 

other. Hence for any u  V(G), VN(u) is an eccentric dominating set. Since radius of G 
is greater than two, vertices in N(u) has their eccentric vertices atleast at distance two from 
u. So, we can leave atleast one vertex v from N2(u) or from N3(u) such that                     

(V  N(u))  {v} form an eccentric dominating set of G. Hence, ed(G)  n  (G). 

Thus we can have a minimal dominating set D  VN(u) of G. Let us prove that D and 

VD are eccentric dominating sets of G . 

 Let v  VD. Since D is an eccentric dominating set of G, there exists u, w  D 

in G such that u is adjacent to v and w is eccentric to v in G. Therefore in G , u is 
eccentric to v and w is adjacent to v. This proves that D is an eccentric dominating set of 

G . 

Now take u  D. In G, u has some adjacent vertices in VD and some non-

adjacent vertices in VD. Hence in G , u has some adjacent vertices in VD and some 

non-adjacent vertices that is eccentric vertices in VD. This implies VD is also an 

eccentric dominating set of G . Hence, G  has atleast two disjoint eccentric dominating 

sets namely D and VD. Therefore, ded( G )  2. 

Corollary: 2.10 Let T be a tree with radius r  2. Then ded( T ) = 2. 

Theorem: 2.11 If G is a connected graph with radius  2, then 2  ded(G) ded( G  ) n2/4. 

Proof: As in theorem 2.9, ded( G )  2. Thus, 2  ded(G) ded( G  Now by theorem 2.7        

ded(G) + ded( G  ) n. Thus )G(d (G)d eded    (ded(G) + ded( G ))/2  n/2; That is                

ded(G) ded( G  )  n2/4. 

Following theorem sharpened the bounds of theorem 2.8 for trees. 

Theorem: 2.12 For any tree of order n  2, 2  ded(T) + ded( T )  4. If radius of T is 

greater than two, then 3  ded(T) + ded( T )  4. 

Proof: We know that ded(T)   2. Also, since an end vertex of T has exactly one eccentric 

vertex in T , ded( T )  2. Thus, 2  ded(T) + ded( T )  4. When the radius is greater than 

two, by theorem 2.9, ded( T )  2. So ded( T ) = 2. Thus we get 3  ded(T) + ded( T )  4. 
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 The bounds in the previous theorem are sharp. When r = 2, ded(T) + ded( T )=2 for 

T = P4. ded(T) + ded( T ) = 4 for a spider having more than three legs. 

ded(T) + ded( T )=3 if T = P7. ded(T) + ded( T ) = 4 if  T is a tree as in figure 2.1.  

 

 

 
 

Figure 2.1 

In the next theorem, we characterize trees T for which ded(T) = 2   

Theorem: 2.13 Let T be a tree with diameter d, then ded(T) = 2 if and only if T satisfies the 
following conditions: 

(i) P(T) has at least two pairs of peripheral vertices at distance d to each 
other. 

(ii) Suppose (x, y), (z, w) are two such pairs, then support of x is different 
from supports of z and w and support of y is different from support of z and w. 

Proof: Clearly ded(T)  2. 
 Suppose T satisfies conditions (i) and (ii), let T1 be the new graph obtained from 
T by removing the supports of x, y, z and w. Clearly T1 is a tree and it has two disjoint 

dominating sets. Let them be D1 and D2. Consider D1' = D1{supports of z and w}{end 

vertices adjacent to supports of x and y}. Clearly, x, y  D1'. Consider D2' = 

D2{supports of x and y}{end vertices adjacent to supports of z and w}. Clearly,          

z,      w  D2'. Then D1', D2' form an eccentric domatic partition of V(T). Thus ded(T) = 2. 

 On the other hand, assume that ded(T) = 2. Let V(G) = D1D2, where {D1, D2} is 
an eccentric domatic partition of T. D1 contains atleast two peripheral vertices at distance 
d to each other. Let them be x, y. D2 contains atleast two peripheral vertices at distance d 
to each other. Let them be z, w. Therefore, T satisfies (i). 
 We know that x, y, z, w are end vertices of T. Since {D1, D2} is an eccentric 
domatic partition of T, supports of x, y are in D2 and supports of z, w are in D1. Thus 
supports of x, y cannot be same as supports of z, w. This proves (ii). Hence the theorem is 
proved. 

Now let us define eccentric domatically full graphs. 

Definition 2.1 A graph G is eccentric domatically full if ded(G  = 1+(G). 



 
 

 
 

127 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Using this definition the previous theorem can be restated as follows. 

Theorem: 2.14 Let T be a tree with diameter d. Then T is eccentric domatically full if and 
only if T satisfies the following conditions: 

(i) P(T) has at least two pairs of peripheral vertices at distance d to each 
other. 

(ii) Suppose (x, y), (z, w) are two such pairs, then support of x is different 
from supports of z and w and support of y is different from support of z and w. 

Definition 2.2 A graph G is eccentric domatic eccentrically full if ded(G  = 

 E(v)1min V(G)v  .  

Since for a tree, = 1, Theorem 2.13 characterizes trees which are 

eccentric domatic eccentrically full. 

If T is a tree with radius r > 2 then from Corollary 2.10 it follows that  is always 
eccentric domatic eccentrically full 

Also, a cycle Cn is eccentric domatically full if and only if n = 3m and n is odd 
since ded(Cn) = 3, if n = 3m and n  is odd. Cn is eccentric domatic eccentrically full if and 
only if n = 3m and n is odd or n is even, since ded(Cn) = 3, when n = 3m and odd; and 
ded(Cn) = 2, when n is even. 

Definition 2.2 A graph G is domatically and eccentrically full if ded(G  = 1+(G)  = 

 E(v)1min V(G)v  .  

 

Thus trees satisfying (i) and (ii) in Theorem 2.13 are domatically and eccentrically full. 

In the end, we prove an existing theorem. 

Theorem: 2.15 Let V be a finite set with more than three vertices, and let k be any integer 

such that 1  k  V/2 and let {D1, D2, ..., Dk} be a partition of V with Di  2. Then 
there exists a self-centered graph G with V(G) = V and {D1, D2, ..., Dk} as an eccentric 
domatic partition. 
Proof: In each Di taking the elements as vertices, join each vertex to all other vertices by 
edges. Therefore, <Di> is a complete graph for all i. Now, for any two distinct Di, Dj split 
Di into two parts X1i, X2i and Dj into two parts Y1j, Y2j. Join each vertex of X1i to all the 
vertices of Y1j and each vertex of X2i to all vertices of Y2j. But no vertex of X1i is joined to 
vertices of Y2j and no vertex of X2i is joined to vertices of Y1j. Name the new graph formed 
as G. Clearly G is self-centered of diameter 2. Also, for any i, Di is an eccentric dominating 

set of G. Hence, {D1, D2, ..., Dk} is an eccentric domatic partition of G and ded(G)  k. If 

Di = 2 for all i, ded(G) is exactly k since ed(G)  2 for G  Kn. 
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