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Abstract: For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The 
Boolean function graph B(Kp, NINC, L(G)) of G is  a   graph  with    vertex   set   V(G)E(G)    
and    two  vertices    in B(Kp, NINC, L(G)) are adjacent if and only if they correspond to two 
adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted 
by B2(G). In this paper, structural properties of the complementB2(G) of B2(G) including 
traversability and eccentricity properties are studied. Also covering, independence and chromatic 
numbers are determined.  

 
1. Introduction 

Graphs discussed in this paper are undirected and simple graphs. For a graph G, 
let V(G) and E(G) denote its vertex set and edge set respectively. Eccentricity of a vertex 

uV(G) is defined as eG(u) = max {dG(u, v): vV(G)}, where dG(u, v) is the distance 
between u and v in G. If there is no confusion, then we simply denote the eccentricity of 
vertex v in G as e(v) and d(u, v) to denote the distance between two vertices u, v in G 
respectively. The minimum and maximum eccentricities are the radius and diameter of G, 
denoted r(G) and diam(G) respectively. When diam(G) = r(G), G is called a self-centered 
graph with radius r, equivalently G is r-self-centered. A vertex u is said to be an eccentric 
point of v in a graph G, if d(u, v) = e(v). In general, u is called an eccentric point, if it is an 
eccentric point of some vertex. We also denote the ith neighborhood of v as 

Ni(v)={uV(G) : dG(u , v) = i}. A connected graph G is said to be geodetic, if a unique 
shortest path joins any two of its vertices.  

 
A vertex and an edge are said to cover each other, if they are incident. A set of 

vertices, which covers all the edges of a graph G is called a point cover for G. The smallest 
number of vertices in any point cover for G is called its point covering number and is 
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denoted by 0(G) or 0. A set of vertices in G is independent, if no two of them are 
adjacent. The largest number of vertices in such a set is called the point independence 

number of G and is denoted by 0(G) or 0.  
 

The Boolean function graph B(Kp, NINC, L(G)) G is a graph with vertex set 

V(G)E(G) and two vertices in B(Kp, NINC, L(G))  are adjacent if and only if they 
correspond to two adjacent edges of G or to a vertex and an edge not incident to it in G. 

For brevity, this graph is denoted by B2(G). In other words, V(B2(G)) = V(G)V(L(G)); 

and E(B2(G)) = [E(T(G))(E(G)E(L(G)))]E(L(G), whereG, L(G) and T(G) 
denote the complement, the line graph and the total graph of G respectively. The vertices 
of G and L(G) in B2(G) are referred as point and line vertices respectively and the line 

vertex in B2(G) corresponding to an edge e in G is denoted by e. In this paper, we study 

structural properties of the complementB2(G) of B2(G) including traversability and 
eccentricity properties.  The definitions and details not furnished in this paper may found 
in [1].  

 
The mixed relations of incident, non-incident, adjacent and non-adjacent can be 

used to analyze nature of clustering of elements of communication networks. The concept 
of  chromatic number  could be used in a particular type of clustering network such that 
each cluster is either independent in that nework. Also any other clustering of network 
with each cluster having at lest one colour class element of vertices network. 
 

2. Prior Results 
Theorem 2.1 [1]: For any nontrivial connected graph G, 0 + 0 = p, where p is the 
number of vertices in G. 
 

3. Main Results 
The following elementary properties of the complementB2(G) of the Boolean 

function graph B2(G) of a graph G are immediate. Let G be a (p, q) graph. 
 
Observation: 

3.1: Degree of a point vertex v inB2(G) is p –1 + degG(v) and the degree of line vertex e 
is q + 1 - degL(G)(e). 
3.2:B2(G) is connected, for any graph G. 
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3.3:B2(G) is biregular if and only if G is regular and is regular if and only if G  nK1, for 

n2. 

3.4: No vertex ofB2(G) is a cut-vertex.  

3.5: Girth ofB2(G) is 3. 

3.6: Maximum number of edge disjoint triangles inB2(G) is q and each vertex of B2(G) 
lies on  a triangle. 

3.7: Each edge ofB2(G) lies on a triangle if and only if each edge ofL(G) lies  on a 

triangle. In this case, L(B2(G))  is Hamiltonian.  

3.8: If K2K1 is a sub graph of G, thenB2(G) contains K4-e as an induced sub graph and 

hence not geodetic. Therefore,B2(G) is geodetic if and only if G  nK1 or K2, for n  2. 
 

In the following, a characterization ofB2(G) to be Eulerian is given. 

Theorem 3.1: Let G be any (p, q) graph with q odd. ThenB2(G) is Eulerian if and only if 
degree of each vertex in G is of same parity. 

Proof: Assume q is odd andB2(G) is Eulerian. Then degree of each vertex in B2(G) is 
even. 
Case(i): p is odd. 

Since degree of a point vertex v inB2(G) is even, p – 1 + degG(v) is even and hence 

degG(v) is even, for all vV(G) 
Case(ii):  p is even. 

Then p – 1 + degG(v) is even implies that degG(v) is odd, for all vV(G). Hence, each 
vertex in G is of same parity.  
Conversely, assume q is odd and degree of each vertex in G is of same parity. Then degree 

of each vertex in L(G) is even and hence degree of a line vertex e inB2(G) is q + 1 - 

degL(G)(e) is even. Let v be a point vertex inB2(G). If degG(v) is odd, for all v in G, then 
since the number of odd degree vertices is even, p is even and hence the degree of v 

inB2(G) is p – 1 + degG(v) is even. If degG(v) is even for all v in G, since q is odd, p is also 

odd and hence degree of v inB2(G) is even  Thus, degree of a point vertex is even. 

Hence,B2(G) is Eulerian. 
 

Theorem 3.2: IfL(G) is Hamiltonian, thenB2(G) is Hamiltonian. 

Proof: AssumeL(G) is Hamiltonian. Then there exists a Hamiltonian cycle, say e1 
e2…eq e1 inL(G). Let v1 and vq be any two vertices in G, incident with the edges in G 
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corresponding to the vertices e1 and eq in the Hamiltonian cycle respectively. In the 

above Hamiltonian cycle, place vq, v1 in between eq and e1 and then place the remaining 

point vertices in between vq and v1. This is possible, since the sub graph ofB2(G) induced 

by all point vertices is complete. This will form a Hamiltonian cycle ofB2(G) and 

henceB2(G) is Hamiltonian. 
 

Theorem 3.3: Let G be any (p, q) graph with p > q. If e(G)  (G) + 1, thenB2(G) is 

Hamiltonian, where e(G) is the maximum degree of L(G). 

Proof:  This theorem is proved by finding the closure ofB2(G). Since the sub graph 

ofB2(G) induced by the point vertices is complete, any two point vertices inB2(G) are 

adjacent. Since e(G)  (G) + 1, the sum of the degrees of any two nonadjacent point, 

line vertices inB2(G) exceeds p + q – 1 and they can be made adjacent. Therefore, in the 

closure ofB2(G), any two point vertices are adjacent and any two point, line vertices are 

adjacent. Construct a path in the closure ofB2(G) on 2q vertices with the initial vertex, a 
point vertex and the terminal vertex, a line vertex and point, line vertices occurring 
alternately. Then place the remaining p - q point vertices in the above path since p > q. 

Hence, there exists a Hamiltonian cycle in the closure ofB2(G) and is Hamiltonian. Thus, 

B2(G) is Hamiltonian. 
 

 In the following, the radius and diameter ofB2(G) are determined. For 

simplicity,d2(u),e2(v) andd2(u, v) are used to denote the degree of a vertex u, the 

eccentricity of a vertex v and the distance between the vertices u and v in B2(G) 
respectively. 
 
Theorem 3.4: Let G be any graph not totally disconnected with at least three vertices. 

Then diam(B2(G)) = 2. 

Proof: Since any two point vertices inB2(G) are adjacent, distance between any two point 

vertices is 1. Let e1 and e2 be any two line vertices inB2(G) and e1 and e2 be the 

corresponding edges in G. Thend2(e1, e2)   =  1,  if (e1, e2)E(G); 

                                                  =  2,  if (e1, e2)E(G). 

Let v, e be a point, line vertex inB2(G) respectively and e be the edge in G 

corresponding to e. Thend2(v, e)  = 1, if v  e; 

                             = 2, if v  e. 
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Since G has at least 3 vertices and not totally disconnected, it follows that diameter 

ofB2(G) is 2. 

Corollary 3.4.1: B2(G) is bi-eccentric with radius 1 if and only if G  K1,nmK1, 

K2tK1, for n  2, m  0 and t  1. 

Proof: Radius ofB2(G) is 1 if and only if there exists a vertex v in G such that each  edge  

in  G  is  incident with v.  That is,   G  K1,nmK1,  K2tK1, for n  2, m  0 and t  1. 
 
Corollary 3.4.2: Let G be a graph with at least three vertices and not totally disconnected. 

B2(G) is complete  if  and only if  G  nK1 or K2, for n  2. 
 

Corollary 3.4.3: If G is  none  of the graphs K1,nmK1, K2tK1, nK1 and K2, for 

 n  2, m  0 and t  1, thenB2(G) is self-centered with radius 2. 
 

In the following, point independence number, point covering number and 

chromatic number for B2(G) are obtained.  
 

Theorem 3.5: For any connected graph G, 0(B2(G)) = (G)  or (G) + 1, where (G) 
is the maximum degree of G. 

Proof: SinceL(G) is an induced sub graph ofB2(G) and any two point vertices inB2(G) 

are adjacent,  a maximum independent set inL(G) together with a point vertex is a 

maximum independent set inB2(G). If G  C3 or G contains at least (G) + 2 vertices, 

then 0(B2(G))) = (G) + 1. Otherwise, 0(B2(G)) = (G). 
 

 Next, point independence number for B2(G) is obtained, when G is a 
disconnected graph. 
 

Theorem 3.6: Let G be any disconnected graph (not totally disconnected) with (G) = 2. 

If one of the components of G is C3, then 0(B2(G)) = 4.  
Proof: Let G contain C3 as one of its components. Then the set of line vertices 
corresponding to the edges in C3 and a point vertex corresponding to a vertex in any other 

component is the maximum independent set inB2(G). Hence, 0(B2(G)) = 4. 
 
Remark 3.1:  

(i). If G  C3K2, then 0(B2(G)) = 4. 
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(ii). If G is disconnected and if either (G) = 2 and none of the components is C3 or if 

(G) > 3 or (G) = 1, then 0(B2(G)) = (G) or (G) + 1. 
 

Theorem 3.7:  For  any  connected  graph  G,  0(B2(G)) = p + q - (G) or  

p + q - (G) - 1. 

Proof: This follows from 0(B2(G)) + 0(B2(G)) = p + q and Theorem 3.5. 

Similarly, 0(B2(G)) can be obtained by using Theorem 3.6 and Theorem 2.1. 
 

Theorem 3.8: Let G be any disconnected graph (not totally disconnected) with (G) = 2. 

If one of the components of G is C3, then 0(B2(G)) = p + q - 4. 
 

 Next, the chromatic number  ofB2(G) is determined. 

Theorem 3.9: For any (p, q) graph with p  3, (B2(G)) = p. 

Proof: The sub graph ofB2(G) induced by all the p point vertices is complete. Hence 

(B2(G))  p. It is to be noted that V(L(G)) can be partitioned into at most p - 1 

independent sets. SinceL(G) is an induced sub graph ofB2(G) and any line vertex 

inB2(G) is adjacent to exactly two point vertices, any p-coloring can be extended 

toB2(G). Thus, (B2(G)) = p. 
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