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Abstract: Let G be a simple graph with vertex set V and edge set E.  A subset S of V is said to be a dom-
chromatic set (or dc-set) if S is a dominating set and the chromatic number of the graph induced by S is 
the chromatic number of G. The minimum cardinality of a dom-chromatic set in a graph G is called 
the dom-chromatic number (or dc- number) and is denoted by γch(G).  In this paper, bounds for dom-
chromatic numbers for bipartite graphs are discussed. 
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1.  Introduction  
  
 In this paper, we discuss finite, simple undirected graphs. For any graph G, V denotes 
the vertex set, E denotes the edge set and p denotes the number of vertices. For any graph 
theoretic terminology which is not defined refer to Harary [2].  

 The chromatic number χ(G) is the minimum k such that vertices of G is properly k-

colorable.  A graph G is said to be a vertex-color-critical graph if χ(G – u) < χ(G) for 

every uV and edge-critical if χ(G – e) < χ(G) for every eE.  Clearly, edge-critical 

graphs are vertex-color-critical.  In general, any element t of the set V(G)  E(G) is 

critical if χ(G – t) < χ(G).  A graph is called a color-critical graph if each of its vertices 
and edges are critical. It is to be noted that the only k-critical graphs for k = 1, 2 and 3 are 
K1, K2 and odd cycles, respectively. 

 A set S  V is a dominating set of G if for each u  V – S, there exists a vertex v  S 
such that u is adjacent to v.  The minimum cardinality of a dominating set in G is called 

the domination number of G, denoted by γ(G). Harary and Haynes [3] defined the 

conditional domination number γ(G: P) as the smallest cardinality of a dominating set S 

 V such that the sub graph <S> induced by S satisfies a graph property P. A dominating 

set S  V of G is a global dominating set if S is also a dominating set in the complement 

G  of G.  
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  In this paper, we introduce a new conditional dominating set called dom-chromatic 
set or simply a dc-set which combines domination and coloring property of a graph. A 
subset S of V is said to be a dom-chromatic set (or dc-set) if S is a dominating set and 

χ(<S>) = χ(G).  The minimum cardinality of a dom-chromatic set in a graph G is called 

the dom-chromatic number (or dc- number) and is denoted by γch(G). 
  

2. Preliminary results 
 

 This section contains some results about domination and some preliminary results on 
dom-chromatic number which will be used in the next section to prove the main result.  
 

Theorem 2.1 [5, pp 41]:  If a graph G has no isolated vertices, then (G) ≤ 





2

p
.  

Theorem 2.2: [5, pp 50]:  For any graph G,  





 1)G(

p
≤ (G) ≤ p – Δ(G). 

 
In a dom-chromatic set, the following observations are made. 
 
Observation 2.3:  

(i) Dom-chromatic set exists for all graphs. 
(ii) Vertex set V is a trivial dom-chromatic set. 
(iii) If S is a dom-chromatic set of G, then each vertex of V – S is not adjacent to 

at least one vertex of S. 
(iv) A dom-chromatic set of a graph is a global dominating set. 

Proof:  
(i) and (ii) follow trivially. 

(iii) Suppose S is a dom-chromatic such that x  V – S is adjacent to each vertex of S, 

then χ(G) ≥ χ(<S>) + 1 = χ(G) + 1 which is a contradiction.  

(iv) Let S be a dom-chromatic of a graph G.  From (iii), in G each vertex of V – S is 

adjacent to at least one vertex of S.  Hence, S is a dominating set of G and the result 
follows.    

  

Proposition 2.4: A dom-chromatic set S is minimal if and only if for each u  S, at least 
one of the following conditions hold. 

(i) χ(<S – u>) < χ(G).  
(ii) S – u is not a dominating set.         
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The dom-chromatic number for some standard graphs: 
 Proposition 2.5: 

(i) γch(Kn)   = n 

(ii) γch(nK1)  = n;  

(iii) γch(Km,n) = 2 

                  (n + 3)/ 3,    if n ≡ 0 (mod 3) 

(iv) γch(Pn)      =        (n + 2)/ 3,      if n ≡ 1(mod 3)   

          (n + 4)/ 3,    if n ≡ 2 (mod 3) 

(v) a. If n is odd, then γch(Cn) = n.    
b. If n is even, then  

                      (n + 3)/ 3,     if n ≡ 0 (mod 3) 

γch(Cn) =       (n + 2)/ 3,     if n ≡ 1(mod 3) 

                                            (n + 4)/ 3,     if n ≡ 2 (mod 3) 

(vi) γch(Wn) =     3,  if n is odd 
 n,  if n is even.  
 

Proposition 2.6:  If G is a disconnected graph with k components G1, G2 …, Gk, then 

γch(G) = γch(Gm) +



k

mi
i 1

γ(Gi), where γch(Gm) = 
ki

min
1

{γch(Gi): χ(Gi) = χ(G)}, for      

m{1, 2…, k}. 
 

Proposition 2.7: If G is any connected graph, then γch(G) = p – q if and only if G = K1.  

Proof:  Necessary condition is trivial.  Suppose that γch(G) = p – q.  Since γch(G) ≥ 1,        
p – q ≥ 1.  Further, as G is connected, p – q≤1.  Thus, p – q = 1 and hence G = K1.   
 

Proposition 2.8:  Let D be any dom-chromatic set of G.  Then |V – D| ≤
Du

)udeg( . 

 

Proposition 2.9:  Let D be any dom-chromatic set of G. Then |V – D| =
Du

)udeg( if and 

only if G = pK1, p≥1. 

 Proof:  If G = pK1, then D = V and deg(u) = 0 for each u  D. Then the equality holds. 

Now suppose that |V – D| =
Du

u)deg( = k.  

            Claim:  k = 0. 
            Suppose k ≥ 1, then two cases arise. 
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 Case i:  G is connected. 

    Then χ(G) ≥ 2.  Let V – D = {u1, u2 …, uk}.  Since D is a dominating set, each ui is 
adjacent to a vertex of D and hence, contributes at least one degree to D.  Since       

χ(<D>) ≥ 2, D contains at least one edge which contributes 2 degrees to D. Hence,          


Du

)udeg( ≥  k + 2, a contradiction. 

 Case ii: G is disconnected. 
If G is totally disconnected, then V = D and hence, |V – D| = k = 0, a contradiction.  
Hence, G has a non trivial component and <D> contains at least one edge.  Then by a 
similar argument as in case (i), a contradiction arises.  Thus in both cases, we arrive at a 

contradiction, proving that k = 0, i.e., |V – D| = 
Du

)udeg( = 0.  Therefore, V = D and 

hence, for each u  V, deg(u) = 0. Thus, G is a totally disconnected graph and hence, G = 
kK1.  

                                                       
 Corollary 2.10:  For any non trivial connected graph with a dom-chromatic set D,  


Du

)udeg( ≥ |V – D| + 2. 

 Proof:  If G is vertex-color-critical, then V = D and 
Du

)udeg( = 2q ≥ 2 = |V – D| + 2. 

Suppose G is not vertex-color-critical, then since G is non trivial, χ(G) ≥ 2. Thus, by a 

similar argument as in Case (i) of proposition 2.9, 
Du

)udeg( ≥ |V – D|+2.    

 

Proposition 2.11:  For any graph G, 





 1)G(

p
 ≤ γch(G) and equality holds if and only 

if G = pK1,  p ≥ 1. 
Proof: From Theorem 2.2, lower bound is trivial. If G = pK1, then the result follows. 

Suppose 





 1)G(

p
 = γch(G) = k and D is a γch-set of G. 

Case i: G is connected. If k ≥ 2, then G is a non trivial connected graph. Then by corollary 

2.10, |V – D|<
Du

u)deg( .  Thus, p–k <
Du

u)deg(  ≤ kΔ(G) and hence, 
1 )G(

p
< k.  

Hence, k >
1 )G(

p
≥ 





 1)G(

p
= k, a contradiction. Thus, k = 1 and hence, 

γch(G)=1.  Therefore, G = K1. 
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Case ii:  G is disconnected. 
Suppose G is not totally disconnected, then G has atleast one non trivial component. By a 
similar argument as in case (i), contradiction arises. Therefore, G = pK1.     
                                                                              
Proposition 2.12: 

(i)If G is a connected graph, then γch(G) = p if and only if G is a vertex-color- critical  or 
G is  color-critical graph. 

(ii)If G is a disconnected graph, then γch(G) = p if and only if either G is a null graph or 
has exactly one non trivial component, which is vertex-color-critical or color-
critical. 

 

3. Main result  
 
In this section, bipartite graphs are studied.  Since the dc-number of a bipartite graph is 

either γ(G) or γ(G) + 1, graphs with exact bounds are identified.  Further certain classes 
of graphs whose dc-number is half of their order are found with a given diameter.   
   
Proposition  3.1:  Let G be a forest with each component of diameter at most 4. Then 

(i) If G has at least one component of diameter 3, then γch(G) = γ(G). 
(ii) If G has at least one component of diameter 4 with its center adjacent to a pendant 

vertex, then γch(G) = γ(G). 

(iii) If none of the components satisfy (i) or (ii), then γch(G) = γ(G) + 1. 
 

Theorem 3.2:  If G is a bipartite graph with no isolated vertices, then γch(G) ≤ 
2

 p + 1 and 

γch(G) =
2

 p + 1  if and only if  G =
2

 p K2. 

Proof:  Since the dc-number of a bipartite graph is either γ(G) or γ(G) + 1, the upper 
bound follows.  Also, if G is the union of independent edges, then equality holds. 

Conversely, suppose that γch(G) =
2

 p + 1 and {V1,V2} be the vertex partition of V. 

Claim 1: |V1|= |V2| 

Without loss of generality, let |V1| < |V2|. Then, |V1|<
2

 p
. Thus, γch(G) ≤ |V1| + 1 <

2

 p + 1, 

a contradiction.   Hence |V1|= |V2|.  

Let S = V1  {x}, x V2. Then, S is a dom-chromatic set of G and |S| = 
2

 p +1.  Hence, S 

is a γch-set of G. 
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Claim 2: |E (<S>)| = 1 
Suppose |E (<S>)|≥ 2, then x is adjacent to more than one vertex of V1.  Let N<S>(x) = {x1, 
x2,…,xr},  r ≥ 2.  Then for each i, 1 ≤ i ≤ r, S – xi   induces a 2-chromatic graph.  Since S is 

minimal, S – xi cannot be a dominating set of G. Thus, there exists a unique vertex yiV2 

such that xiyi  E.  Similarly, as S is maximal, for each z  V1 – N[x] there exists a unique 

vertex z V2 such that zzE.  Then, |V2| ≥
2

 p + 1, a contradiction.  Thus, each x  V2, 

x is adjacent to only one vertex of V1.  By claim 1, deg(x) = 1 for each xV1  V2. 
Therefore, G=mK2.    
 

Corollary 3.3:  If G is a bipartite graph with no isolated vertices and γch(G) = 
2

 p + 1, then 

γ(G) =
2

 p .  

 
Proposition 3.4:  

(i) A bipartite graph G has a dominating edge if and only if γch(G) =  2 

(ii) If G is a tree of diameter 2 or 3 then, γch(G) = 2. 
Proof: 

(i) Let e = xy be a dominating edge of G.  Then {x, y} is a γch-set of G.  Conversely 

suppose γch(G) = 2 and  S  be any γch-set of G, then |S| = 2.  Since χ(<S>) = 2, < S >  = K2. 
Further, S is also a dominating set of G implies G has a dominating edge. 

(ii)  Since diam(G) = 2 or 3, G has a dominating edge.  Then by (i), γch(G)  = 2.  
 

Theorem 3.5:  If T is a tree with diam(G) ≤ 4, then γch(G) =
2

 p
 if and only if G is K1,3,  P4 

or a graph in the family given in figure 1. 

Proof: Necessary condition is trivial. Suppose that γch(G) =
2

 p
.   Clearly, diam(G) ≥ 2. 

For otherwise, G = K2 and then γch(G) = p, a contradiction.  
Case i:  diam(G) = 2. 
Then G = K1,n,  n ≥ 2, which implies γch(G) = 2. Then p = 4. Therefore, G = K1,3. 
Case ii:  diam(G) = 3.  

From Proposition 3.5(ii), γch(G) = 2. Therefore, p = 4 and hence, G = P4. 
Case iii:  diam(G) =  4. 
Then there exists a unique vertex x such that e(x) = 2. Therefore, N(x) can be partitioned 
into three sets as follows: 
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S1 = {y  N(x) | deg(y) = 1} 

S2 = {y  N(x) | deg(y) = 2} 

S3 ={y  N(x) | deg(y) ≥ 3} 
Let | Si | = mi, 1≤ i ≤ 3. 
Claim 1: m1 > 0, m2 > 0 and m3 > 0 cannot be simultaneously hold 

Suppose not. Then γch(G) = m2 + m3 +1 and  p ≥ 1 +  m1 + 2m2 + 3m3, a contradiction to  

γch(G) = 
2

 p . 

As diam(G) = 4, at least one of m2  or  m3  is not 0. 
Claim 2: m1 > 0, m2 = 0 and m3 > 0 cannot simultaneously hold. 

Suppose claim does not hold. Then γch(G)= m3  + 1 and p ≥ 3m3 + m1 + 1, a contradiction. 
Sub Case i: m1 > 0 
By claim 1, one of m2 and m3 is zero. By claim 2, m2 cannot be zero. Hence, m2 > 0 and m3 

= 0.  Since diam(G) = 4, m2 ≥ 2 and γch(T) =  m2  + 1. Hence, p = 2m2 + 2= m1+2m2+1. 
Therefore, m1 = 1. Then G is in the family given in Figure 1(a). 
Sub Case ii:  m1 = 0. 

Suppose m2 = 0.  Then m3 ≥ 2 and γch(G) =  m3 + 1.  Therefore, p = 2m3 + 2.  Also p ≥ 3m3 

+ 1 implies 1 ≥ m3, a contradiction. So let m3 = 0. Then, m2 ≥ 2 and p = 2m2 + 1. This 
implies G is a tree with odd number of vertices, a contradiction. Hence, both m2 and m3 

are not zero.  Then γch(G) =  m2 + m3 + 1 and hence, p = 2m2 + 2m3 + 2. Also p ≥ 2m2 + 

3m3 + 1 implies 1 ≥ m3.  Therefore, m3 = 1 and hence, γch(G) =  m2 + 2.  Let y  S3. But, p 
= 2m2 + 4 implies deg(y) = 3. Then G is a tree in the family given in Figure 1(b).                          

 
 
 
 
 
 
 

Figure 1 
Theorem 3.6: Suppose G is a forest with each component of diameter 1 or 2. Then 

γch(G)=
 2

 p  if  and only if  G is either K1,3  mK2 , m > 0 or 2P3  mK2 , m ≥ 0. 

Proof:  Necessary condition can be easily verified.  Conversely, suppose γch(G)=
 2

 p .  Let 

G1, G2 ..., Gr, r ≥ 2 be the components of G. 
Claim 1: All components cannot be of diameter 1. 

... 

(a) 

… 

(b) 
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Suppose not.  Then G = mK2, m ≥ 1.  By Theorem 3.2, γch(G) = m + 1= 
2

 p

 
+ 1, a 

contradiction. 
Case i: All components are of diameter 2.  
Then for each i, 1 ≤ i ≤ r, 

Gi = 
inK ,1  ni ≥ 2                                                                           

   γch(G) = r + 1      -----------------          (1) 

   p = 2r + 2       -----------------          (2) 
Claim 2: G cannot have

inK ,1 , ni ≥ 4 as a sub graph.  

Suppose G1 = 
1,1 nK , n1 ≥ 4. From (1), V(Gi) ≥ 3 for each i. Then, p ≥ 5 + 3(r –1) = 3r 

+ 2,  a contradiction to (2). 
Claim 3: G cannot have more than 2 components. 
Suppose r ≥ 3. Then p ≥ 3r ≥ 2r + 3, contradiction to (2).  
As r = 2, from (2), p = 6. Since both components are of diameter 2, G = 2P3 and (ii) holds.  
Case ii : G has components of diameter 1 and diameter 2. 
Hence, each components is either a K1, n, n ≥ 2 or a K2 . Let r1, r2 be the number of 

components of K1,n and K2 respectively. Then γch(G) =  r1 + r2  + 1. Therefore,  
p = 2 r1 + 2 r2 + 2                                                                      -----------------           (3) 
Claim 4:  r1 ≤ 2.  
Suppose not. Then p ≥ 3 r1  + 2 r2  > 2 r1 + 2 r2  + 2, a contradiction to (3). 

Suppose r1 = 1.  Then γch(G) = r2 + 2 and p = 2r2 + 4. Hence, K1,n  can have only 4 vertices. 

Then G = K1,3  m K2, m > 0 and (i) holds. If r1 = 2, then γch(G) = r2 + 3. Then p = 2r2 + 

6. Since two K1,n’s with n ≥ 2 and 6 vertices is 2P3, G = 2P3  mK2 and (iii) holds.                                                      
 
Theorem 3.7.  If G is a forest of even order without isolated vertices and each component 

is of diameter at most 3 with at least one component of diameter 3, then γch(G) = 
2

 p if 

and only if G is 
i.  mP4, m > 1 or 

ii. mP4  nK2,  m, n ≥ 1. 

Proof: Necessary condition is easily verified. Suppose γch(G) = 
2

 p . Let r1, r2 and r3 be 

number of components of diameter 1, 2 and 3 respectively. Then 
                       p ≥ 2r1 + 3r2 + 4r3                    -----------------           (1) 
and                  r3 > 0                                    -----------------           (2) 
Claim 1: r1 = 0 and r2 > 0 cannot hold. 
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Suppose not. Then γch(G) = r2 + 2r3 and hence, p = 2r2 + 4r3. From (1), p ≥ 4r3 + 3r2, a 
contradiction. 
Claim 2: r1 > 0 and r2 > 0 cannot hold. 

Suppose not. Then γch(G) = r1 + r2 + 2r3, which implies p = 2r1 + 2r2+ 4r3 a contradiction 
to (1). 
From claim 1, claim 2 and from (2), only 2 cases are to be considered. 
Case i: r1 = 0 and  r2 = 0. 

Therefore, γch(G) = 2r3, and hence, p = 4r3. Since each component has at least 4 vertices, G 
= r3P4 and (i) is proved.  
Case ii : r1 > 0, r2 = 0. 

Then γch(G) = r1 + 2r3, which implies p = 2r1 + 4r3 and hence, G = r3P4  r1 K2 and (ii) 
holds.                                                                                
 
Theorem 3.8. If G is a forest with isolated vertices and each non-trivial  component is of 

diameter  at most 2 with at least one component of diameter 2, then γch(G) = 
2

 p if and 

only if G =  
ki

i



1
inK ,1   rK2  (



k

i 1

ni - k - 2 )K1, ni ≥ 2 for each i, k ≥ 1, r ≥ 0,  




k

i 1

ni - k - 2 > 0. 

Proof : Necessary condition is trivial. So suppose γch(G) = 
2

 p .  

Case i : All non trivial components are of diameter 2. 

Then,  G = 
ki

i



1
inK ,1  mK1, ni ≥ 2, which implies γch(G) =  k + m + 1. Therefore, p = 

2k +2m+2. By the structure of G, p = 


k

i 1

ni + k + m. Therefore, m = 


k

i 1

ni - k  - 2 and 

satisfies the given condition.  
Case ii: G contains non trivial components of diameter 1 and 2. 

Then G = 
ki

i



1
inK ,1  rK2  mK1,  r >0, m >0. Therefore, γch(G) = k + r + m + 1and 

hence, p = 2k + 2r + 2m +2. From the structure of G, p = 


k

i 1

ni + k + 2r + m.  
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Therefore, m = 


k

i 1

ni - k - 2 and the result follows.                                               

Notation 3.9. iP4 is the family of graphs obtained from P4 by randomly joining i vertices to 

the intermediate vertices. It can be seen that any tree of diameter 3 is iP4 ,  i 
 ≥ 0. 

  
Theorem 3.10. If G is a forest with isolated vertices and the non-trivial components are of 

diameter at most 3 with at least one component of diameter 3, then  γch(G) = 
2

 p if and 

only if G is one of the following graphs.  

i) 
mi

i



1

ilP4   rK2  nK1,  r ≥ 0, 


m

i 1

li = n 

ii) 
mi

i



1

ilP4  (
s

j 1
jnK ,1 )  rK2  nK1, r ≥ 0, nj ≥ 2 for each j and                            




m

i 1

li + 


s

j 1

nj =  s + n. 

Proof: Necessary condition is trivial. Suppose γch(G) = 
2

 p . 

Case i: All non trivial components are of diameter 3. 

Then G = 
mi

i



1

ilP4  nK1. Therefore, p = 4m + 


m

i 1

li + n.  As γch(G) = 2m + n,  p =    

4m + 2n. Then 


m

i 1

li = n. Hence, G satisfies (i) with r = 0. 

Case ii: Non trivial components are of diameter 3 and 1. 

Then G = 
mi

i



1

ilP4  rK2  nK1. Therefore,  p = 4m + 


m

i 1

li + 2r + n. As γch(G) =         

2m + r + n,  p = 4m + 2r + 2n. Then 


m

i 1

li = n and hence, G satisfies (i) with r > 0.  

Case iii: Non trivial components are of diameter 3 and 2. 
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Then G = 
mi

i



1

ilP4  (
s

j 1
jnK ,1 )  nK1, nj ≥ 2. This implies that p = 4m + 



m

i 1

li  + 




s

j 1

(nj + 1) + n. But  γch(G) = 2m + s + n implies p = 4m + 2s + 2n. Therefore, 


m

i 1

li  + 




s

j 1

nj = s + n. Then G satisfies (ii)  with r = 0. 

Case iv: Non trivial components are of diameter 3, 2 and 1.  

Then, G = 
mi

i



1

ilP4  (
s

j 1
jn,K1 )  rK2  nK1, nj ≥ 2 and  hence, p = 4m +



m

i 1

li  + 




s

j 1

(nj + 1) + 2r+ n.  Also, γch(G) = 2m + s + r + n implies p = 4m + 2s + 2r + 2n. This 

leads to 


m

i 1

li  + 


s

j 1

nj = s + n. Hence, G satisfies (ii) with r > 0.         

                

Theorem 3.11. If G is bipartite, then γch(G) = p if and only if either G = K2 or G =  

K2  (p - 2)K1. 

Proof : If G is connected, then γch(G) = p if and only if G is vertex-color-critical. Since the 
only bipartite vertex-color-critical graph is K2, the result follows. Suppose G is 
disconnected. The result follows from Proposition 4.1.7(ii).    
            
Theorem 3.12. Let G be a tree of diameter 5. If at least one of the central elements of G is 

adjacent to a pendant vertex, then γch(G) = γ(G), otherwise γch(G) = γ(G) + 1. 
Proof: As diam(G) = 5, G has two central elements and they are adjacent. Let them be x 

and y. Then they are adjacent. Let S1 = {u | u  N(x) - y}, S2 = {u | u  N(y) - x }, S3 = {u 

| u  S1 and d(u) > 1} and S4 = {u | u  S2 and d(u) > 1}.   
Case i: Both x and y are not adjacent to any pendant vertices. 

Then S1  S2 is a γ-set of G and S1  S2   {x} a γch-set of G. Therefore, γch(G) =     

γ(G) + 1. 
Case ii: x or y is adjacent to a pendant vertex not both. 

Suppose x is adjacent to a pendant vertex. Then S2  S3  {x} is a γch-set as well as a     

γ-set of G. Therefore, γch(G) = γ(G). 
Case iii: Both x and y are adjacent to pendant vertices. 
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Then S3  S4  {x, y} is a γch-set as well as a γ-set of G. Therefore, γch(G) = γ(G).            
 

Theorem 3.13. Let G be a tree of diameter 5. Then γch(G) = 
2

 p if and only of G is a graph 

in the family of trees given in figure 2. 

Proof:  Necessary condition is trivial. Suppose γch(G) = 
2

 p . Let x and y be the central 

elements of G. Let S1= {u | u  N(x) - y} and S2 = {u | u  N(y) - x}.  
Case i: Both x and y are not adjacent to any pendant vertices. 

Then S1  S2  {x} is γch-set of G. Then p = 2(|S1| + |S2| + 1), which implies that G is a 
tree in the family given in figure 3(a) 
Case ii: At least one of x and y is adjacent to all pendant vertices  
First the following claim is proved. 
Claim :. Only one of x and y is adjacent to pendant vertices cannot hold. 

Suppose not. Let x be adjacent to pendant vertices and y is not. Define S3 = {u | u  S1 

and d(u) > 1}. Then S2  S3  {x} is a γch-set of G. Therefore, γch(G) = |S2| + |S3| + 1 and 
hence, p = 2(|S2| + |S3| +1). Also, from the structure of G, p ≥ 2(|S2| + |S3|) + 3, a 
contradiction. 

 
 
 
 
 
 
 
 

Figure 2 
 

Hence, by the claim both x and y must be adjacent to pendant vertices. Let S4 = {u | u  

S2 and d(u) > 1}.  Then S3  S4  {x, y} is a γch-set of G. Therefore, γch(G) = |S3| + |S4| + 
2 and hence, p = 2(|S3| + |S4| + 2). Therefore, G is a tree in the family given in figure 2(b).            
 

Proposition 3.14. If G is a bipartite graph of diameter 2, then γch(G) = 2.  
Proof : Let xyz be a diameteral path of G. Define 3 sets as follows: 
S1 =  N(x) - y,    S2 = N(y) - {x, z},    S3 = N(z) - y. Since G is bipartite, all the above 3 sets 

induce null graphs. If S1 = S2 = S3 = , then G = K1,2 and hence, γch(G) = 2. If S1 = S3 =  

and S2 ≠ , again G is a K1,n, n ≥ 3. Therefore, γch(G) = 2. So suppose S1 or S3 ≠ , say S1 .  

x y 

… …

(b) 

y x 

... ... 

(a) 
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Claim: S1 =  S3. 

Let u  S1 - S3. Since diam(G) = 2, d(u, z) = 2. As u is not adjacent to y, there exists a v 
such that uvz is a path. Then xyzvux is a 5-cycle, a contradiction.  

Then {x, y} is a γch-set of G.  
 

Proposition 3.15. Let G be a tree of diameter 3. Then γch(G) = p - ∆(G) if and only if G = 
P4 or G is a tree in the family given in figure 3. 

Proof : Clearly, γch(G) = 2. Suppose, G = P4. Then γch(G) = 2, p = 4, ∆(G) = 2 and the 

proposition holds. Suppose G is a tree given in Figure 4. Then γch(G) = 2,  p = deg(z) + 2 
and ∆(G) = deg(z). Then the result holds. 

Conversely, suppose γch(G) = p - ∆(G). Let e = yz be a dominating edge.  Then deg(y) ≥ 2 
and  deg(z) ≥ 2. 
Claim : deg(y) ≥ 3 and deg(z) ≥ 3 cannot hold simultaneously. 
Case i: deg(y) = deg(z) = 2 
Then G = P4 and the conditions are satisfied. 
Case ii: deg(y) = 2 and deg(z) ≥ 3. 

Let deg(z) = n ≥ 3. Then ∆(G) = n and p = n + 2. Therefore, p - ∆(G) = 2 = γch(G) and G 
is a tree given in Figure 3.                                                                            

 
 
 
 
 
 
 
 

Figure 3 

Proposition 3.16. Suppose G is a bipartite unicyclic graph and for each v  V - V(C),        

d(v, C) = 1, then γch(G) ≤ p - t, where C is the unique cycle and t is the number of 

pendent vertices of G. Further the equality holds if and only if deg(v) > 2 for each v  
V(C). 
Proof : From the given condition, it is clear that any vertex not in C is adjacent to exactly 
one vertex of C and is a pendant vertex. Then V(C) is a dom-chromatic set of G and 

|V(C)|= p – t. This gives the given upper bound. Suppose deg(v) >2 for each  v  V(C). 

Then V(C) is a   γch-set of G, and the bound is attained. Suppose γch(G) = p - t. If there 
exists a vertex v in C of degree 2, then V(C) - v is a dom-chromatic set of G of cardinality 

p - t -1, a contradiction. Thus, deg(v) > 2 for each v  V(C).                                                                                      

r
 

1 2

z

... 

x

y 

(r ≥ 2) 
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Proposition 3.17. If G is a path, then γch(G) = 
2

 p  if and only if G is P4, P6, or P8.  

Proof : Necessary condition is trivial. Conversely, suppose γch(G) = 
2

 p .  

Case i: p ≡ 0 (mod 3) 

From Proposition 4.1.5 (iv),  γch(G) =  
3

 3p . Then p = 6.  

Case ii: p ≡ 1 (mod 3) 

From Proposition 4.1.5(iv),  γch(G) =  
3

2 p 
. Then p = 4.  

Case iii: p ≡ 2 (mod 3) 

From Proposition 4.1.5(iv), γch(G) = 
3

4 p . Then p = 8.                                      

 

Proposition 3.18. If G is an even cycle, then γch(G) = 
2

 p  if and only if G is C4, C6, or C8. 

 

Theorem 3.19.  If  G is any (p, q) graph, q ≥ 1, then γch(G) = p - q + 1 if and only if G 

contains exactly γch(G) -1 components and exactly one of the following holds. 
i. each component is isomorphic to K1,s’s, s ≥ 0  
ii. exactly one component is a tree with diameter 3 or K1, t, t  ≥ 1 and every other 
component is isomorphic to K1,m’s, m ≥ 0  

Proof: Suppose G has γch(G) - 1 components with (i) or (ii) is satisfied. Let γch(G) - 1 = k 

and G = G1 G2  ..   Gk. Let each Gi be a (pi, qi)-graph. Then in both cases, γch(G) = 

k + 1 and q = 


k

i 1

qi = 


k

i 1

(pi - 1) = p - k and hence, γch(G) = p - q + 1.  

Conversely, suppose γch(G) = p - q + 1. Suppose G has k components. 

Claim 1: k = γch(G) - 1.  

Since q ≥ 1, χ(G) ≥ 2 and a γch-set contains at least one vertex from each component,  

                                   k + 1 ≤ γch(G)        ---------------------      (1) 

Since each component is connected, q ≥ p - k, and thus, k ≥ p - q = γch(G) - 1. Therefore,       

k + 1 ≥  γch(G). Therefore, from (1),  k + 1 = γch(G). 

 Let G1, G2,…,Gk be the components of G. Without loss of generality, let γch(G1) = 

ki1
min {γch(Gi) |χ(Gi) = χ(G) }. From Claim 1, γch(G) - 1 = k.  

Claim 2: γch(G1) = 2 and γch(Gi) = 1,  i ≥ 2.  
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Since G contains an edge, γch(G1) ≥ 2. Suppose γch(G1) ≥ 3 . By Claim 1, 


k

i 2

 γ(Gi) ≥ k - 

1 ≥ γch(G) - 2  and therefore, γch(G) =  γch(G1) + 


k

i 2

γ(Gi) ≥  γch(G)  + 1,  a 

contradiction.  

Thus, γch(G1) = 2. Now  γch(G) = 2 +


k

i 2

γ(Gi) . Therefore, 


k

i 2

γ(Gi) = γch(G) - 2 =  k - 1.  

γ(Gi) = 1, for each i. 
Claim3: Each Gi is a tree. 

Suppose Gj contains a cycle. Then qj ≥  pj and qi ≥ pi  - 1 for each i ≠ j. Now, q = 


k

i 1

qi = 

qj + 



k

ji
i 1

qi ≥ pj + 



k

ji
i 1

( pi - 1) = 


k

i 1

pi - (k - 1) = p -  γch(G) + 2.  

Thus, γch(G) ≥ p  - q + 2, a contradiction. 

Each Gi is a tree and γ(Gi) = 1 imply that Gi = K1, s,  s ≥ 0 for each i≠ 1. Since G1 = K1, s, s ≥ 

0 and γch(G1) = 2 imply that either G1 is a K1, s, s ≥ 1 or a tree with diameter 3.                                                           
 
Theorem 3.20. If T is a tree with diam(T) = 4 and k is the number of non pendant vertices 

of T, then γch(T) =  k. 

Proof : Since diam(T) = 4, T has unique center. Let u be the center of T and S = {x | x  

N(u), deg(x) ≥ 2 }. If u is adjacent to a pendant vertex, then S  {u} is a γch-set of T. 

Hence, γch(T) is the number of non pendant vertices of T and let it be k. If u is not 

adjacent to any pendant vertex, then again S  {u} is a γch-set of T and the result follows.                                         
 

Proposition 3.21. If G is a tree of diameter 3, then γch(G) = γch(G ) if and only if G = P4. 

Proof : If G is P4, then the result is trivial. Conversely suppose γch(G) = γch(G ). Let the 

dominating edge of G be e = uv. Let deg(u) = m and deg(v) = n. Also in G , (N(u) - v)  

(N(v) - v) is a Km+n-2 and χ(G ) = m + n - 2. Clearly, the above set is dominatingG . Hence, 

γch(G ) = m + n - 2. Since γch(G) = γch(G ), m  + n = 4 and the result follows.  
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Proposition 3.22. If G and G  , both bipartite with diameter 3, then γch(G) = γch(G ) if 
and only if G = P4. 
Solution: If G = P4, then from Proposition 3.21, the equality holds. Conversely let the 
equality hold and uvwx be a diameteral path in G. Then N(v)  and  N(w) induce null 

graphs. Further, as G is bipartite both N(v) and N(w) are of cardinality 2. 
Case i: both u and x are pendant vertices. 
Then G = P4 and hence, G is P4.  
 ase ii: at least one of u and x is non pendant vertex. 
Suppose u is a non pendant vertex and then by similar argument |N(u)| = 2 and N(u) is a 
null graph. Let N(u) = {v, u1}. Clearly, u1 is not adjacent to x, otherwise a 5-cycle is 
induced. Then  
{ u1, v, x} induces C3, a contradiction. 
Thus, from case i and ii, a solution is obtained only when G is P4. 
 

Theorem 3.23. If G is a tree of diameter 3, then γch(G) +  γch (G ) = p. 

Since G is a tree of diameter 3, G has a dominating edge. Therefore, γch(G) = 2. Let uv be 
the dominating edge of G and V1, V2 be the set of pendant vertices adjacent to u and v 

respectively.  Then in G , <V1 V2> induces a complete graph Kp-2 and, u and v are non 
adjacent. Further u is adjacent to each vertex of V1 and v is adjacent to each vertex of V2 

in G . Thus, V1 V2 is a γch-set of G . Therefore, γch (G ) = p -  2 and (i) follows. 
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