International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 2, April –June 2010, pp. 80-95

Dom-Chromatic Sets in Bipartite Graphs

T. N. Janakiraman1 and M. Poobalaranjani2

1 Department of Mathematics, National Institute of Technology,Tiruchirappalli-620015, India.

Email: tnjraman2000@yahoo.com, janaki@nitt.edu

2 Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli-620002, India

Email: mpranjani@hotmail.com, mpranjani28@gmail.com

Abstract: Let G be a simple graph with vertex set V and edge set E. A subset S of V is said to be a domchromatic set (or dc-set) if S is a dominating set and the chromatic number of the graph induced by S is the chromatic number of G. The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) and is denoted by γch(G). In this paper, bounds for domchromatic numbers for bipartite graphs are discussed.

Keywords: Dominating set, domination number, dom-chromatic set (or dc-set), dom-chromatic number (or dc-number).

1. Introduction

 In this paper, we discuss finite, simple undirected graphs. For any graph G, V denotes the vertex set, E denotes the edge set and p denotes the number of vertices. For any graph theoretic terminology which is not defined refer to Harary [2].

The chromatic number $\gamma(G)$ is the minimum k such that vertices of G is properly kcolorable. A graph G is said to be a vertex-color-critical graph if $\gamma(G - u) < \gamma(G)$ for every $u \in V$ and edge-critical if $\gamma(G - e) < \gamma(G)$ for every $e \in E$. Clearly, edge-critical graphs are vertex-color-critical. In general, any element t of the set $V(G) \cup E(G)$ is critical if $\gamma(G - t) < \gamma(G)$. A graph is called a color-critical graph if each of its vertices and edges are critical. It is to be noted that the only k-critical graphs for $k = 1$, 2 and 3 are K_1 , K_2 and odd cycles, respectively.

A set $S \subseteq V$ is a dominating set of G if for each $u \in V - S$, there exists a vertex $v \in S$ such that u is adjacent to v. The minimum cardinality of a dominating set in G is called the domination number of G, denoted by $\gamma(G)$. Harary and Haynes [3] defined the conditional domination number $\gamma(G; P)$ as the smallest cardinality of a dominating set S $\subset V$ such that the sub graph <S> induced by S satisfies a graph property P. A dominating set $S \subseteq V$ of G is a global dominating set if S is also a dominating set in the complement *G* of G.

Received: 09 June, 2009; Revised: 27 October, 2009; Accepted: 14 December, 2009

 In this paper, we introduce a new conditional dominating set called dom-chromatic set or simply a dc-set which combines domination and coloring property of a graph. A subset S of V is said to be a dom-chromatic set (or dc-set) if S is a dominating set and χ (<S>) = χ (G). The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) and is denoted by $\gamma_{ch}(G)$.

2. Preliminary results

 This section contains some results about domination and some preliminary results on dom-chromatic number which will be used in the next section to prove the main result.

Theorem 2.1 [5, pp 41]: If a graph G has no isolated vertices, then
$$
\gamma(G) \le \left\lfloor \frac{p}{2} \right\rfloor
$$
.
\n**Theorem 2.2:** [5, pp 50]: For any graph G, $\left\lfloor \frac{p}{\Delta(G) + 1} \right\rfloor \le \gamma(G) \le p - \Delta(G)$.

In a dom-chromatic set, the following observations are made.

Observation 2.3:

- (i) Dom-chromatic set exists for all graphs.
- (ii) Vertex set V is a trivial dom-chromatic set.
- (iii) If S is a dom-chromatic set of G, then each vertex of $V S$ is not adjacent to at least one vertex of S.
- (iv) A dom-chromatic set of a graph is a global dominating set.

Proof:

(i) and (ii) follow trivially.

(iii) Suppose S is a dom-chromatic such that $x \in V - S$ is adjacent to each vertex of S, then $\chi(G) \ge \chi(\langle S \rangle) + 1 = \chi(G) + 1$ which is a contradiction.

(iv) Let S be a dom-chromatic of a graph G. From (iii), in G each vertex of V – S is adjacent to at least one vertex of S. Hence, S is a dominating set of \overline{G} and the result follows.

Proposition 2.4: A dom-chromatic set S is minimal if and only if for each $u \in S$, at least one of the following conditions hold.

- (i) $\gamma(~~) < $\gamma(G)$.~~$
- (ii) S u is not a dominating set.

The dom-chromatic number for some standard graphs: Proposition 2.5:

(i)
$$
\gamma_{ch}(K_n) = n
$$

\n(ii) $\gamma_{ch}(nK_1) = n$;
\n(iii) $\gamma_{ch}(K_{m,n}) = 2$
\n(iv) $\gamma_{ch}(P_n) = \begin{cases} (n+3)/3, & \text{if } n \equiv 0 \pmod{3} \\ (n+2)/3, & \text{if } n \equiv 1 \pmod{3} \\ (n+4)/3, & \text{if } n \equiv 2 \pmod{3} \end{cases}$
\n(v) a. If n is odd, then $\gamma_{ch}(C_n) = n$.
\nb. If n is even, then $\left\lceil (n+3)/3, \text{ if } n \equiv 0 \pmod{3} \right\rceil$

$$
\gamma_{ch}(C_n) = \begin{cases}\n(n+3)/3, & \text{if } n \equiv 1 \pmod{3} \\
(n+2)/3, & \text{if } n \equiv 1 \pmod{3} \\
(n+4)/3, & \text{if } n \equiv 2 \pmod{3}\n\end{cases}
$$
\n(vi)
$$
\gamma_{ch}(W_n) = \begin{cases}\n3, & \text{if } n \text{ is odd} \\
n, & \text{if } n \text{ is even.}\n\end{cases}
$$

Proposition 2.6: If G is a disconnected graph with k components G_1, G_2, \ldots, G_k , then $\gamma_{\rm ch}(\rm G)$ = $\gamma_{\rm ch}(\rm G_m)$ + \sum \neq $=$ *k* $i \neq m$ $i = 1$ $\gamma(G_i)$, where $\gamma_{ch}(G_m) = \min_{1 \le i \le k} {\gamma_{ch}(G_i): \chi(G_i)} = \chi(G)}$, for

 $m \in \{1, 2..., k\}.$

Proposition 2.7: If G is any connected graph, then $\gamma_{ch}(G) = p - q$ if and only if $G = K_1$. **Proof:** Necessary condition is trivial. Suppose that $\gamma_{ch}(G) = p - q$. Since $\gamma_{ch}(G) \geq 1$, $p - q \ge 1$. Further, as G is connected, $p - q \le 1$. Thus, $p - q = 1$ and hence $G = K_1$.

Proposition 2.8: Let D be any dom-chromatic set of G. Then $|V - D| \le \sum$ *uD deg(u)* .

Proposition 2.9: Let D be any dom-chromatic set of G. Then $|V - D| = \sum$ $u \in D$ *deg(u)* if and only if $G = pK_1, p \ge 1$.

Proof: If $G = pK_1$, then $D = V$ and $deg(u) = 0$ for each $u \in D$. Then the equality holds. Now suppose that $|V - D| = \sum_{u \in D} deg(u) = k$.

Claim: $k = 0$.

Suppose $k \geq 1$, then two cases arise.

Case i: G is connected.

Then $\chi(G) \geq 2$. Let $V - D = \{u_1, u_2, ..., u_k\}$. Since D is a dominating set, each u_i is adjacent to a vertex of D and hence, contributes at least one degree to D. Since $\gamma(\langle D \rangle) \geq 2$, D contains at least one edge which contributes 2 degrees to D. Hence, $\sum deg(u) \ge k + 2$, a contradiction. *uD*

 Case ii: G is disconnected.

If G is totally disconnected, then $V = D$ and hence, $|V - D| = k = 0$, a contradiction. Hence, G has a non trivial component and <D> contains at least one edge. Then by a similar argument as in case (i), a contradiction arises. Thus in both cases, we arrive at a contradiction, proving that $k = 0$, i.e., $|V - D| = \sum_{k=1}^{N}$ *uD* $deg(u) = 0$. Therefore, $V = D$ and

hence, for each $u \in V$, deg(u) = 0. Thus, G is a totally disconnected graph and hence, G = kK_1 .

Corollary 2.10: For any non trivial connected graph with a dom-chromatic set D, $\sum deg(u) \ge |V - D| + 2.$ *uD*

Proof: If G is vertex-color-critical, then $V = D$ and \sum *uD* $deg(u) = 2q \ge 2 = |V - D| + 2.$

Suppose G is not vertex-color-critical, then since G is non trivial, $\chi(G) \geq 2$. Thus, by a similar argument as in Case (i) of proposition 2.9, \sum *uD* $deg(u) \ge |V - D| + 2.$

Proposition 2.11: For any graph G, $\left[\frac{p}{\Delta(G)+1} \right]$ \mathbf{r} $\Delta(G)$ + 1 $\left| \frac{p}{p} \right| \leq \gamma_{ch}(G)$ and equality holds if and only

if $G = pK_1$, $p \ge 1$.

Proof: From Theorem 2.2, lower bound is trivial. If $G = pK_1$, then the result follows. Suppose $\left\lfloor \frac{p}{\Delta(G)+1} \right\rfloor$ \mathbf{r} $\Delta(G)$ + 1 $\left| \frac{p}{p} \right| = \gamma_{ch}(G) = k$ and D is a γ_{ch} -set of G.

Case i: G is connected. If $k \ge 2$, then G is a non trivial connected graph. Then by corollary

2.10,
$$
|V - D| < \sum_{u \in D} deg(u)
$$
. Thus, $p-k < \sum_{u \in D} deg(u) \le k\Delta(G)$ and hence, $\frac{p}{\Delta(G)+1} < k$.

Hence, $k >$ $\Delta(G)$ + 1 *p* $\geq \left\lfloor \frac{p}{\Delta(G)+1} \right\rfloor$ \mathbf{r} $\Delta(G)$ + 1 $\left| \frac{p}{q} \right| = k$, a contradiction. Thus, $k = 1$ and hence,

Case ii: G is disconnected.

Suppose G is not totally disconnected, then G has atleast one non trivial component. By a similar argument as in case (i), contradiction arises. Therefore, $G = pK₁$.

Proposition 2.12:

- (i)If G is a connected graph, then $\gamma_{ch}(G) = p$ if and only if G is a vertex-color- critical or G is color-critical graph.
- (ii)If G is a disconnected graph, then $\gamma_{ch}(G) = p$ if and only if either G is a null graph or has exactly one non trivial component, which is vertex-color-critical or colorcritical.

3. Main result

In this section, bipartite graphs are studied. Since the dc-number of a bipartite graph is either $\gamma(G)$ or $\gamma(G) + 1$, graphs with exact bounds are identified. Further certain classes of graphs whose dc-number is half of their order are found with a given diameter.

Proposition 3.1: Let G be a forest with each component of diameter at most 4. Then

- (i) If G has at least one component of diameter 3, then $\gamma_{ch}(G) = \gamma(G)$.
- (ii) If G has at least one component of diameter 4 with its center adjacent to a pendant vertex, then $\gamma_{ch}(G) = \gamma(G)$.
- (iii) If none of the components satisfy (i) or (ii), then $\gamma_{ch}(G) = \gamma(G) + 1$.

Theorem 3.2: If G is a bipartite graph with no isolated vertices, then $\gamma_{ch}(G) \le$ 2 $\frac{p}{p}$ + 1 and

 $\gamma_{ch}(G) =$ 2 $\frac{p}{q}$ + 1 if and only if G = 2 $\frac{p}{p}$ K₂.

Proof: Since the dc-number of a bipartite graph is either $\gamma(G)$ or $\gamma(G) + 1$, the upper bound follows. Also, if G is the union of independent edges, then equality holds. Conversely, suppose that $\gamma_{ch}(G)$ = 2 $\frac{p}{p}$ + 1 and {V₁,V₂} be the vertex partition of V.

$$
\underline{\textbf{Claim 1:}} |V_1| = |V_2|
$$

Without loss of generality, let $|V_1| < |V_2|$. Then, $|V_1|$ < 2 *p* . Thus, $\gamma_{ch}(G) \le |V_1| + 1$ < 2 $\frac{p}{p}$ + 1, a contradiction. Hence $|V_1| = |V_2|$.

Let S = $V_1 \cup \{x\}$, $x \in V_2$. Then, S is a dom-chromatic set of G and $|S|$ = 2 *p* +1. Hence, S is a γ_{ch} -set of G.

Claim 2: $|E(~~)| = 1~~$

Suppose $|E (\langle S \rangle)| \ge 2$, then x is adjacent to more than one vertex of V_1 . Let $N_{\langle S \rangle}(x) = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}\}$ $x_2,...,x_r$, $r \ge 2$. Then for each i, $1 \le i \le r$, $S - x_i$ induces a 2-chromatic graph. Since S is minimal, S – x_i cannot be a dominating set of G. Thus, there exists a unique vertex $y_i \in V_2$ such that $x_iy_i \in E$. Similarly, as S is maximal, for each $z \in V_1 - N[x]$ there exists a unique vertex $z' \in V_2$ such that $zz' \in E$. Then, $|V_2| \ge \frac{p}{2} + 1$, a contradiction. Thus, each $x \in V_2$, x is adjacent to only one vertex of V_1 . By claim 1, deg(x) = 1 for each $x \in V_1 \cup V_2$. Therefore, $G= mK₂$.

Corollary 3.3: If G is a bipartite graph with no isolated vertices and $\gamma_{ch}(G)$ = 2 $\frac{p}{p}$ + 1, then

$$
\gamma(G) = \frac{p}{2} \, .
$$

Proposition 3.4:

(i) A bipartite graph G has a dominating edge if and only if $\gamma_{ch}(G) = 2$

(ii) If G is a tree of diameter 2 or 3 then, $\gamma_{ch}(G) = 2$.

Proof:

(i) Let e = xy be a dominating edge of G. Then $\{x, y\}$ is a γ_{ch} -set of G. Conversely suppose $\gamma_{ch}(G) = 2$ and S be any γ_{ch} -set of G, then $|S| = 2$. Since $\chi(\langle S \rangle) = 2, \langle S \rangle = K_2$. Further, S is also a dominating set of G implies G has a dominating edge.

(ii) Since diam(G) = 2 or 3, G has a dominating edge. Then by (i), $\gamma_{ch}(G) = 2$.

Theorem 3.5: If T is a tree with diam(G) \leq 4, then $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$ if and only if G is K_{1,3}, P₄ or a graph in the family given in figure 1.

Proof: Necessary condition is trivial. Suppose that $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$. Clearly, diam(G) \geq 2.

For otherwise, $G = K_2$ and then $\gamma_{ch}(G) = p$, a contradiction. **Case i:** diam $(G) = 2$.

Then G = $K_{1,n}$, $n \ge 2$, which implies $\gamma_{ch}(G) = 2$. Then p = 4. Therefore, G = $K_{1,3}$. **Case ii:** diam $(G) = 3$.

From Proposition 3.5(ii), $\gamma_{ch}(G) = 2$. Therefore, p = 4 and hence, G = P₄.

Case iii: diam $(G) = 4$.

Then there exists a unique vertex x such that $e(x) = 2$. Therefore, N(x) can be partitioned into three sets as follows:

 $S_1 = \{y \in N(x) \mid deg(y) = 1\}$ $S_2 = \{y \in N(x) \mid deg(y) = 2\}$ $S_3 = {y \in N(x) | \deg(y) \geq 3}$ Let $|S_i| = m_i$, $1 \le i \le 3$. **Claim 1:** $m_1 > 0$, $m_2 > 0$ and $m_3 > 0$ cannot be simultaneously hold Suppose not. Then $\gamma_{ch}(G) = m_2 + m_3 + 1$ and $p \ge 1 + m_1 + 2m_2 + 3m_3$, a contradiction to

$$
\gamma_{\rm ch}(G)=\frac{p}{2}\,.
$$

As diam(G) = 4, at least one of m₂ or m₃ is not 0.

Claim 2: $m_1 > 0$, $m_2 = 0$ and $m_3 > 0$ cannot simultaneously hold.

Suppose claim does not hold. Then $\gamma_{ch}(G) = m_3 + 1$ and $p \ge 3m_3 + m_1 + 1$, a contradiction. **<u>Sub Case i</u>:** m₁ > 0

By claim 1, one of m_2 and m_3 is zero. By claim 2, m_2 cannot be zero. Hence, $m_2 > 0$ and m_3 = 0. Since diam(G) = 4, $m_2 \ge 2$ and $\gamma_{ch}(T) = m_2 + 1$. Hence, $p = 2m_2 + 2 = m_1 + 2m_2 + 1$. Therefore, $m_1 = 1$. Then G is in the family given in Figure 1(a). **<u>Sub Case ii:</u>** $m_1 = 0$.

Suppose $m_2 = 0$. Then $m_3 \ge 2$ and $\gamma_{ch}(G) = m_3 + 1$. Therefore, $p = 2m_3 + 2$. Also $p \ge 3m_3$ + 1 implies $1 \ge m_3$, a contradiction. So let $m_3 = 0$. Then, $m_2 \ge 2$ and $p = 2m_2 + 1$. This implies G is a tree with odd number of vertices, a contradiction. Hence, both m_2 and m_3 are not zero. Then $\gamma_{ch}(G) = m_2 + m_3 + 1$ and hence, $p = 2m_2 + 2m_3 + 2$. Also $p \ge 2m_2 + 1$ $3m_3 + 1$ implies $1 \ge m_3$. Therefore, $m_3 = 1$ and hence, $\gamma_{ch}(G) = m_2 + 2$. Let $y \in S_3$. But, p $= 2m₂ + 4$ implies deg(y) = 3. Then G is a tree in the family given in Figure 1(b).

Theorem 3.6: Suppose G is a forest with each component of diameter 1 or 2. Then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is either $K_{12} \cup mK_2$, $m > 0$ or $2P_3 \cup mK_2$, $m \ge 0$.

Proof: Necessary condition can be easily verified. Conversely, suppose $\gamma_{ch}(G)$ = 2 *^p* . Let $G_1, G_2, ..., G_n$, $r \geq 2$ be the components of G.

Claim 1: All components cannot be of diameter 1.

Suppose not. Then $G = mK_2$, $m \ge 1$. By Theorem 3.2, $\gamma_{ch}(G) = m + 1$ = 2 $\frac{p}{q}$ + 1, a contradiction. **Case i:** All components are of diameter 2. Then for each i, $1 \le i \le r$,

 $G_i = K_{1,n_i} \space n_i \geq 2$ $\Rightarrow \quad \gamma_{ch}(G) = r + 1$ -------------------- (1) p = 2r + 2 ----------------- (2)

Claim 2: G cannot have K_{1,n_i} , $n_i \ge 4$ as a sub graph.

Suppose $G_1 = K_{1,n_1}$, $n_1 \ge 4$. From (1), $|V(G_i)| \ge 3$ for each i. Then, $p \ge 5 + 3(r - 1) = 3r$ + 2, a contradiction to (2).

Claim 3: G cannot have more than 2 components.

Suppose $r \ge 3$. Then $p \ge 3r \ge 2r + 3$, contradiction to (2).

As $r = 2$, from (2), $p = 6$. Since both components are of diameter 2, $G = 2P_3$ and (ii) holds. **Case ii :** G has components of diameter 1 and diameter 2.

Hence, each components is either a $K_{1,n}$, $n \ge 2$ or a K_2 . Let r_1 , r_2 be the number of components of $K_{1,n}$ and K_2 respectively. Then $\gamma_{ch}(G) = r_1 + r_2 + 1$. Therefore, $p = 2 r_1 + 2 r_2 + 2$ (3) **Claim 4:** $r_1 \leq 2$.

Suppose not. Then $p \ge 3$ $r_1 + 2$ $r_2 > 2$ $r_1 + 2$ $r_2 + 2$, a contradiction to (3).

Suppose $r_1 = 1$. Then $\gamma_{ch}(G) = r_2 + 2$ and $p = 2r_2 + 4$. Hence, $K_{1,n}$ can have only 4 vertices. Then G = K_{1,3} \cup m K₂, m > 0 and (i) holds. If r₁ = 2, then $\gamma_{ch}(G) = r_2 + 3$. Then p = 2r₂ + 6. Since two $K_{1,n}$'s with $n \ge 2$ and 6 vertices is $2P_3$, $G = 2P_3 \cup mK_2$ and (iii) holds.

Theorem 3.7. If G is a forest of even order without isolated vertices and each component is of diameter at most 3 with at least one component of diameter 3, then $\gamma_{ch}(G) = \frac{p}{m}$ if 2 and only if G is

i. mP_4 , $m > 1$ or

ii. $mP_4 \cup nK_2$, $m, n \ge 1$.

Proof: Necessary condition is easily verified. Suppose $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$. Let r_1 , r_2 and r_3 be number of components of diameter 1, 2 and 3 respectively. Then

Claim 1: $r_1 = 0$ and $r_2 > 0$ cannot hold.

Suppose not. Then $\gamma_{ch}(G) = r_2 + 2r_3$ and hence, $p = 2r_2 + 4r_3$. From (1), $p \ge 4r_3 + 3r_2$, a contradiction.

Claim 2: $r_1 > 0$ and $r_2 > 0$ cannot hold.

Suppose not. Then $\gamma_{ch}(G) = r_1 + r_2 + 2r_3$, which implies $p = 2r_1 + 2r_2 + 4r_3$ a contradiction to (1).

From claim 1, claim 2 and from (2), only 2 cases are to be considered.

Case i: $r_1 = 0$ and $r_2 = 0$.

Therefore, $\gamma_{ch}(G) = 2r_3$, and hence, $p = 4r_3$. Since each component has at least 4 vertices, G $=$ r₃P₄ and (i) is proved.

Case ii:
$$
r_1 > 0
$$
, $r_2 = 0$.

Then $\gamma_{ch}(G) = r_1 + 2r_3$, which implies $p = 2r_1 + 4r_3$ and hence, $G = r_3P_4 \cup r_1 K_2$ and (ii) holds.

Theorem 3.8. If G is a forest with isolated vertices and each non-trivial component is of diameter at most 2 with at least one component of diameter 2, then $\gamma_{ch}(G) = \frac{p}{m}$ if and 2

only if
$$
G = \bigcup_{i=1}^{i=k} K_{1,n_i} \cup rK_2 \cup (\sum_{i=1}^{k} n_i - k - 2)K_1, n_i \ge 2
$$
 for each $i, k \ge 1, r \ge 0$,

$$
\sum_{i=1}^k\quad n_i-k-2>0.
$$

Proof : Necessary condition is trivial. So suppose $\gamma_{ch}(G) = \frac{p}{q}$. 2

Case i : All non trivial components are of diameter 2.

Then, $G = \bigcup_{i=1}^{i=k}$ *i* = $\iint_{-1}^1 K_{1,n_i} \cup mK_1, n_i \ge 2$, which implies $\gamma_{ch}(G) = k + m + 1$. Therefore, p = 2k +2m+2. By the structure of G, $p = \sum_{i=1}^{k}$ $i = 1$ $n_i + k + m$. Therefore, $m = \sum_{i=1}^{k}$ $i = 1$ n_i - k - 2 and

satisfies the given condition.

Case ii: G contains non trivial components of diameter 1 and 2.

Then $G = \bigcup_{i=1}^{i=k}$ *i* = \iint_{-1} *K*_{1,*n_i*} ∪ **r**K₂ ∪ **m**K₁, **r** >0, **m** >0. Therefore, γ_{ch}(G) = k + **r** + **m** + 1and

hence, $p = 2k + 2r + 2m + 2$. From the structure of G, $p = \sum_{i=1}^{k}$ $i = 1$ $n_i + k + 2r + m$. 89 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Therefore,
$$
m = \sum_{i=1}^{k} n_i - k - 2
$$
 and the result follows.

Notation 3.9. P_4^i is the family of graphs obtained from P_4 by randomly joining i vertices to the intermediate vertices. It can be seen that any tree of diameter 3 is P_4^i , $i \ge 0$.

Theorem 3.10. If G is a forest with isolated vertices and the non-trivial components are of diameter at most 3 with at least one component of diameter 3, then $\gamma_{ch}(G) = \frac{p}{2}$ $\frac{p}{q}$ if and only if G is one of the following graphs.

i)
$$
\bigcup_{i=1}^{i=m} P_4^{l_i} \cup rK_2 \cup nK_1, r \ge 0, \sum_{i=1}^{m} l_i = n
$$

\nii) $\bigcup_{i=1}^{i=m} P_4^{l_i} \cup (\bigcup_{j=1}^{s} K_{1,n_j}) \cup rK_2 \cup nK_1, r \ge 0, n_j \ge 2$ for each j and
\n $\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} n_j = s + n.$

Proof: Necessary condition is trivial. Suppose $\gamma_{ch}(G) = \frac{p}{2}$ $\frac{p}{q}$. **Case i:** All non trivial components are of diameter 3. =

Then $G = \bigcup_{i=1}^{i=m}$ *i* $P_4^{l_i} \cup nK_1$. Therefore, p = 4m + $\sum_{i=1}^m$ $i = 1$ l_i + n. As $\gamma_{ch}(G) = 2m + n$, p =

 $4m + 2n$. Then $\sum_{i=1}^{m}$ $i = 1$ l_i = n. Hence, G satisfies (i) with $r = 0$.

Case ii: Non trivial components are of diameter 3 and 1.

Then
$$
G = \bigcup_{i=1}^{i=m} P_4^{l_i} \cup rK_2 \cup nK_1
$$
. Therefore, $p = 4m + \sum_{i=1}^{m} l_i + 2r + n$. As $\gamma_{ch}(G) =$

2m + r + n, p = 4m + 2r + 2n. Then $\sum_{i=1}^{m}$ *i* \exists l_i = n and hence, G satisfies (i) with $r > 0$.

Case iii: Non trivial components are of diameter 3 and 2.

Dom-Chromatic Sets in Bipartite Graphs 90

Then
$$
G = \bigcup_{i=1}^{i=m} P_4^{l_i} \cup (\bigcup_{j=1}^{s} K_{1,n_j}) \cup nK_1, n_j \ge 2
$$
. This implies that $p = 4m + \sum_{i=1}^{m} l_i + \sum_{j=1}^{s} (n_j + 1) + n$. But $\gamma_{ch}(G) = 2m + s + n$ implies $p = 4m + 2s + 2n$. Therefore, $\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} (n_j + 1) + n$.

 $\sum_{j=1}^s$ *j*=1 $n_j = s + n$. Then G satisfies (ii) with $r = 0$.

Case iv: Non trivial components are of diameter 3, 2 and 1.

Then,
$$
G = \bigcup_{i=1}^{i=m} P_4^{l_i} \cup (\bigcup_{j=1}^{s} K_{1,n_j}) \cup rK_2 \cup nK_1, n_j \ge 2
$$
 and hence, $p = 4m + \sum_{i=1}^{m} l_i +$

$$
\sum_{j=1}^{s} (n_j + 1) + 2r + n. Also, \gamma_{ch}(G) = 2m + s + r + n implies p = 4m + 2s + 2r + 2n. This
$$

leads to
$$
\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} n_j = s + n
$$
. Hence, G satisfies (ii) with $r > 0$.

Theorem 3.11. If G is bipartite, then $\gamma_{ch}(G) = p$ if and only if either $G = K_2$ or $G =$ $K_2 \cup (p-2)K_1$.

Proof : If G is connected, then $\gamma_{ch}(G) = p$ if and only if G is vertex-color-critical. Since the only bipartite vertex-color-critical graph is K_2 , the result follows. Suppose G is disconnected. The result follows from Proposition 4.1.7(ii).

Theorem 3.12. Let G be a tree of diameter 5. If at least one of the central elements of G is adjacent to a pendant vertex, then $\gamma_{ch}(G) = \gamma(G)$, otherwise $\gamma_{ch}(G) = \gamma(G) + 1$.

Proof: As diam(G) = 5, G has two central elements and they are adjacent. Let them be x and y. Then they are adjacent. Let $S_1 = \{u \mid u \in N(x) - y\}$, $S_2 = \{u \mid u \in N(y) - x\}$, $S_3 = \{u \mid u \in N(y)\}$ $| u \in S_1$ and $d(u) > 1$ } and $S_4 = \{u \mid u \in S_2 \text{ and } d(u) > 1\}.$

Case i: Both x and y are not adjacent to any pendant vertices.

Then $S_1 \cup S_2$ is a γ -set of G and $S_1 \cup S_2 \cup \{x\}$ a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G)$ = $\gamma(G) + 1$.

Case ii: x or y is adjacent to a pendant vertex not both.

Suppose x is adjacent to a pendant vertex. Then $S_2 \cup S_3 \cup \{x\}$ is a γ_{ch} -set as well as a γ -set of G. Therefore, $\gamma_{ch}(G) = \gamma(G)$.

Case iii: Both x and y are adjacent to pendant vertices.

Then $S_3 \cup S_4 \cup \{x, y\}$ is a γ_{ch} -set as well as a γ -set of G. Therefore, $\gamma_{ch}(G) = \gamma(G)$.

Theorem 3.13. Let G be a tree of diameter 5. Then $\gamma_{ch}(G)$ = 2 *^p* if and only of G is a graph in the family of trees given in figure 2.

Proof: Necessary condition is trivial. Suppose $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$. Let x and y be the central

elements of G. Let S_1 = {u | u $\in N(x)$ - y} and S_2 = {u | u $\in N(y)$ - x}. **Case i:** Both x and y are not adjacent to any pendant vertices.

Then $S_1 \cup S_2 \cup \{x\}$ is γ_{ch} -set of G. Then $p = 2(|S_1| + |S_2| + 1)$, which implies that G is a tree in the family given in figure 3(a)

Case ii: At least one of x and y is adjacent to all pendant vertices

First the following claim is proved.

Claim :. Only one of x and y is adjacent to pendant vertices cannot hold.

Suppose not. Let x be adjacent to pendant vertices and y is not. Define $S_3 = \{u \mid u \in S_1\}$ and d(u) > 1}. Then $S_2 \cup S_3 \cup \{x\}$ is a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G) = |S_2| + |S_3| + 1$ and hence, $p = 2(|S_2| + |S_3| + 1)$. Also, from the structure of G, $p \ge 2(|S_2| + |S_3|) + 3$, a contradiction.

Hence, by the claim both x and y must be adjacent to pendant vertices. Let $S_4 = \{u \mid u \in$ S_2 and $d(u) > 1$. Then $S_3 \cup S_4 \cup \{x, y\}$ is a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G) = |S_3| + |S_4| +$ 2 and hence, $p = 2(|S_3| + |S_4| + 2)$. Therefore, G is a tree in the family given in figure 2(b).

Proposition 3.14. If G is a bipartite graph of diameter 2, then $\gamma_{ch}(G) = 2$. Proof : Let xyz be a diameteral path of G. Define 3 sets as follows: $S_1 = N(x) - y$, $S_2 = N(y) - {x, z}$, $S_3 = N(z) - y$. Since G is bipartite, all the above 3 sets induce null graphs. If $S_1 = S_2 = S_3 = \emptyset$, then $G = K_{1,2}$ and hence, $\gamma_{ch}(G) = 2$. If $S_1 = S_3 = \emptyset$ and $S_2 \neq \emptyset$, again G is a $K_{1,n}$, n ≥ 3 . Therefore, $\gamma_{ch}(G) = 2$. So suppose S_1 or $S_3 \neq \emptyset$, say S_1 .

Claim: $S_1 = S_3$.

Let $u \in S_1$ - S_3 . Since diam(G) = 2, d(u, z) = 2. As u is not adjacent to y, there exists a v such that uvz is a path. Then xyzvux is a 5-cycle, a contradiction.

Then $\{x, y\}$ is a γ_{ch} -set of G.

Proposition 3.15. Let G be a tree of diameter 3. Then $\gamma_{ch}(G) = p - \Delta(G)$ if and only if G = P_4 or G is a tree in the family given in figure 3.

Proof : Clearly, $\gamma_{ch}(G) = 2$. Suppose, $G = P_4$. Then $\gamma_{ch}(G) = 2$, $p = 4$, $\Delta(G) = 2$ and the proposition holds. Suppose G is a tree given in Figure 4. Then $\gamma_{ch}(G) = 2$, $p = deg(z) + 2$ and $\Delta(G)$ = deg(z). Then the result holds.

Conversely, suppose $\gamma_{ch}(G) = p - \Delta(G)$. Let e = yz be a dominating edge. Then deg(y) ≥ 2 and $deg(z) \geq 2$.

Claim : deg(y) \geq 3 and deg(z) \geq 3 cannot hold simultaneously.

Case i: $deg(y) = deg(z) = 2$

Then $G = P_4$ and the conditions are satisfied.

Case ii: $deg(y) = 2$ and $deg(z) \ge 3$.

Let deg(z) = n ≥ 3. Then $\Delta(G)$ = n and p = n + 2. Therefore, p - $\Delta(G)$ = 2 = $\gamma_{ch}(G)$ and G is a tree given in Figure 3.

Figure 3

Proposition 3.16. Suppose G is a bipartite unicyclic graph and for each $v \in V - V(C)$, $d(v, C) = 1$, then $\gamma_{ch}(G) \le p - t$, where C is the unique cycle and t is the number of pendent vertices of G. Further the equality holds if and only if deg(v) > 2 for each v \in $V(C)$.

Proof : From the given condition, it is clear that any vertex not in C is adjacent to exactly one vertex of C and is a pendant vertex. Then V(C) is a dom-chromatic set of G and $|V(C)| = p - t$. This gives the given upper bound. Suppose deg(v) >2 for each $v \in V(C)$. Then V(C) is a γ_{ch} -set of G, and the bound is attained. Suppose $\gamma_{ch}(G) = p - t$. If there exists a vertex v in C of degree 2, then V(C) - v is a dom-chromatic set of G of cardinality $p - t - 1$, a contradiction. Thus, $deg(v) > 2$ for each $v \in V(C)$.

Proposition 3.17. If G is a path, then $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$ if and only if G is P₄, P₆, or P₈. **Proof :** Necessary condition is trivial. Conversely, suppose $\gamma_{ch}(G)$ = 2 *p* . Case i: $p \equiv 0 \pmod{3}$

From Proposition 4.1.5 (iv), $\gamma_{ch}(G)$ = 3 $\frac{p+3}{p}$. Then p = 6.

Case ii: $p \equiv 1 \pmod{3}$

From Proposition 4.1.5(iv), $\gamma_{ch}(G)$ = 3 $\frac{p+2}{p}$. Then $p = 4$.

Case iii: $p \equiv 2 \pmod{3}$

From Proposition 4.1.5(iv), $\gamma_{ch}(G)$ = 3 $\frac{p+4}{p}$. Then $p = 8$.

Proposition 3.18. If G is an even cycle, then $\gamma_{ch}(G)$ = 2 $\frac{p}{q}$ if and only if G is C_4 , C_6 , or C_8 .

Theorem 3.19. If G is any (p, q) graph, $q \ge 1$, then $\gamma_{ch}(G) = p - q + 1$ if and only if G contains exactly $\gamma_{ch}(G)$ -1 components and exactly one of the following holds.

i. each component is isomorphic to $K_{1,s}$'s, s ≥ 0

ii. exactly one component is a tree with diameter 3 or $K_{1, p}$, $t \ge 1$ and every other component is isomorphic to $K_{1,m}$'s, $m \ge 0$

Proof: Suppose G has $\gamma_{ch}(G)$ - 1 components with (i) or (ii) is satisfied. Let $\gamma_{ch}(G)$ - 1 = k and $G = G_1 \cup G_2 \cup ... \cup G_k$. Let each G_i be a (p_i, q_i) -graph. Then in both cases, $\gamma_{ch}(G)$ = $k + 1$ and $q = \sum_{i=1}^{k}$ $\sum_{i=1}^{k}$ **q**_i = $\sum_{i=1}^{k}$ $i = 1$ $(p_i - 1) = p - k$ and hence, $\gamma_{ch}(G) = p - q + 1$.

Conversely, suppose $\gamma_{ch}(G) = p - q + 1$. Suppose G has k components.

Claim 1: $k = \gamma_{ch}(G) - 1$.

Since q \geq 1, χ (G) \geq 2 and a γ _{ch}-set contains at least one vertex from each component,

 $k + 1 \leq \gamma_{\text{ch}}(G)$ ------------------------ (1)

Since each component is connected, $q \ge p - k$, and thus, $k \ge p - q = \gamma_{ch}(G) - 1$. Therefore, $k + 1 \ge \gamma_{ch}(G)$. Therefore, from (1), $k + 1 = \gamma_{ch}(G)$.

Let $G_1, G_2,...,G_k$ be the components of G. Without loss of generality, let $\gamma_{ch}(G_1)$ = $\min_{1 \le i \le k} {\gamma_{ch}(G_i) | \chi(G_i) = \chi(G)}$ }. From Claim 1, $\gamma_{ch}(G) - 1 = k$. **Claim 2:** $\gamma_{ch}(G_1) = 2$ and $\gamma_{ch}(G_i) = 1$, $i \ge 2$.

Dom-Chromatic Sets in Bipartite Graphs 94

Since G contains an edge, $\gamma_{\rm ch}(G_1)\geq 2$. Suppose $\gamma_{\rm ch}(G_1)\geq 3$. By Claim 1, \sum $=$ *k* $i = 2$ $γ(G_i) \geq k$ -

$$
1\,\geq\,\gamma_{\text{ch}}(G)\,\text{ - 2 and therefore, }\,\gamma_{\text{ch}}(G)\,\text{ = }\,\,\gamma_{\text{ch}}(G_1)\,\text{ + }\,\sum_{i=2}^k\,\,\gamma(G_i)\,\text{ }\geq\,\,\,\gamma_{\text{ch}}(G)\,\text{ \ \, +\,\, 1,\text{ \ \, a}}%
$$

contradiction.

Thus,
$$
\gamma_{ch}(G_1) = 2
$$
. Now $\gamma_{ch}(G) = 2 + \sum_{i=2}^{k} \gamma(G_i)$. Therefore, $\sum_{i=2}^{k} \gamma(G_i) = \gamma_{ch}(G) - 2 = k - 1$.

 $\gamma(G_i) = 1$, for each i. Claim3: Each G_i is a tree.

Suppose G_j contains a cycle. Then $q_j \ge p_j$ and $q_i \ge p_i$ - 1 for each $i \ne j$. Now, $q = \sum$ $=$ *k* $i = 1$ $q_i =$

$$
q_j + \sum_{\substack{i=1 \ i \neq j}}^k \quad q_i \geq p_j + \sum_{\substack{i=1 \ i \neq j}}^k \quad (p_i - 1) = \sum_{i=1}^k \quad p_i - (k - 1) = p - \gamma_{ch}(G) + 2.
$$

Thus, $\gamma_{ch}(G) \ge p - q + 2$, a contradiction.

Each G_i is a tree and $\gamma(G_i) = 1$ imply that $G_i = K_{1, s}$, $s \ge 0$ for each $i \ne 1$. Since $G_1 = K_{1, s}$, $s \ge 0$ 0 and $\gamma_{ch}(G_1) = 2$ imply that either G_1 is a $K_{1,s}$, $s \ge 1$ or a tree with diameter 3.

Theorem 3.20. If T is a tree with diam(T) = 4 and k is the number of non pendant vertices of T, then $\gamma_{ch}(T) = k$.

Proof : Since diam(T) = 4, T has unique center. Let u be the center of T and $S = \{x \mid x \in \mathbb{R}\}$ N(u), deg(x) ≥ 2 }. If u is adjacent to a pendant vertex, then S \cup {u} is a γ_{ch} -set of T. Hence, $\gamma_{ch}(T)$ is the number of non pendant vertices of T and let it be k. If u is not adjacent to any pendant vertex, then again S \cup {u} is a γ_{ch} -set of T and the result follows.

Proposition 3.21. If G is a tree of diameter 3, then $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$ if and only if G = P₄. **Proof :** If G is P₄, then the result is trivial. Conversely suppose $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$. Let the dominating edge of G be e = uv. Let deg(u) = m and deg(v) = n. Also in \overline{G} , (N(u) - v) \cup (N(v) - v) is a K_{m+n-2} and $\chi(\overline{G})$ = m + n - 2. Clearly, the above set is dominating \overline{G} . Hence, $\overline{\gamma}_{ch}(\overline{G}) = m + n - 2$. Since $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$, $m + n = 4$ and the result follows.

Proposition 3.22. If G and \overline{G} , both bipartite with diameter 3, then $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$ if and only if $G = P_4$.

Solution: If $G = P_4$, then from Proposition 3.21, the equality holds. Conversely let the equality hold and uvwx be a diameteral path in G. Then N(v)and N(w) induce null graphs. Further, as *G* is bipartite both N(v) and N(w) are of cardinality 2.

Case i: both u and x are pendant vertices.

Then $G = P_4$ and hence, G is P_4 .

 ase ii: at least one of u and x is non pendant vertex.

Suppose u is a non pendant vertex and then by similar argument $|N(u)| = 2$ and $N(u)$ is a null graph. Let $N(u) = \{v, u_1\}$. Clearly, u_1 is not adjacent to x, otherwise a 5-cycle is induced. Then

 $\{u_1, v, x\}$ induces C_3 , a contradiction.

Thus, from case i and ii, a solution is obtained only when G is P_4 .

Theorem 3.23. If G is a tree of diameter 3, then $\gamma_{ch}(G) + \gamma_{ch}(\overline{G}) = p$.

Since G is a tree of diameter 3, G has a dominating edge. Therefore, $\gamma_{ch}(G) = 2$. Let uv be the dominating edge of G and V_1 , V_2 be the set of pendant vertices adjacent to u and v respectively. Then in G , <V₁ \cup V₂> induces a complete graph K_{p-2} and, u and v are non adjacent. Further u is adjacent to each vertex of V_1 and v is adjacent to each vertex of V_2 in \overline{G} **.** Thus, $V_1 \cup V_2$ is a γ_{ch} -set of \overline{G} . Therefore, $\gamma_{ch}(\overline{G}) = p - 2$ and (i) follows.

References

- [1] **G.A.Dirac**. A property of 4-chromatic graphs and some remarks on ciritical graphs. J.London Math. Soc. 27 (1952),85-92. (chap2)
- [2] **F.Harary.** Graph Theory, Narosa Publishing House, 1988.
- [3] **F.Harary** and **T.W.Haynes.** Conditional graph theory IV: Dominating Sets, Utilas Math.
- [4] **F.Harary** and **C.A.Trauth Jr.** Connectedness of products of two directed graphs, SIAM J. Appl. Math.14: 250-254, 1966.
- [5] **T.W.Haynes, S.T.Hedetniemi** and **P.J.Slater**. Fundamentals of domination in Graphs, Marcel Dekker Inc., New York, 1998.
- [6] **T.R.Jensen and B.Toft**. Graph coloring problems, John Wiley, 1995.
- **[7] D.B.West**. Introduction to Graph Theory, Prentice-Hall of India. Pvt . Ltd.