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Abstract: Let G be a simple graph with vertex set V and edge set E. A subset S of V is said to be a dom-
chromatic set (or de-set) if' S is a dominating set and the chromatic number of the graph induced by S is
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1. Introduction

In this paper, we discuss finite, simple undirected graphs. For any graph G, V denotes
the vertex set, E denotes the edge set and p denotes the number of vertices. For any graph

theoretic terminology which is not defined refer to Harary [2].

The chromatic number )(G) is the minimum k such that vertices of G is properly k-
colorable. A graph G is said to be a vertex-color-critical graph if Y(G - u) < X(G) for
every u€V and edge-critical if (G - e) < Y(G) for every e€E. Clearly, edge-critical
graphs are vertex-color-critical. In general, any element t of the set V(G) U E(G) is

critical if Y(G - t) < ((G). A graph is called a color-critical graph if each of its vertices
and edges are critical. It is to be noted that the only k-critical graphs for k = 1, 2 and 3 are
K,, K, and odd cycles, respectively.

A set S C V is a dominating set of G if for each u € V - §, there exists a vertex v € S

such that u is adjacent to v. The minimum cardinality of a dominating set in G is called
the domination number of G, denoted by Y(G). Harary and Haynes [3] defined the
conditional domination number Y(G: P) as the smallest cardinality of a dominating set S
C V such that the sub graph <S> induced by S satisfies a graph property P. A dominating
set S C V of G is a global dominating set if S is also a dominating set in the complement

E of G.
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In this paper, we introduce a new conditional dominating set called dom-chromatic
set or simply a dc-set which combines domination and coloring property of a graph. A

subset S of V is said to be a dom-chromatic set (or dc-set) if S is a dominating set and
A(<S>) = X(G). The minimum cardinality of a dom-chromatic set in a graph G is called

the dom-chromatic number (or dc- number) and is denoted by Y 4(G).
2. Preliminary results

This section contains some results about domination and some preliminary results on

dom-chromatic number which will be used in the next section to prove the main result.

Theorem 2.1 [5, pp 41]: If a graph G has no isolated vertices, then Y(G) < LEJ .

2

Theorem 2.2: [5, pp 50]: For any graph G, LLJ Y@ <p- A(G).

AG)+1
In a dom-chromatic set, the following observations are made.

Observation 2.3:

i) Dom-chromatic set exists for all graphs.
(ii) Vertex set V is a trivial dom-chromatic set.
(iii) If S is a dom-chromatic set of G, then each vertex of V - § is not adjacent to

at least one vertex of S.
(iv) A dom-chromatic set of a graph is a global dominating set.
Proof:
(i) and (ii) follow trivially.
(iii) Suppose S is a dom-chromatic such that x € V - S is adjacent to each vertex of S,
then Y(G) = Y(<S>) + 1 = (G) + 1 which is a contradiction.
(iv) Let S be a dom-chromatic of a graph G. From (iii), in 5 each vertex of V - S is

adjacent to at least one vertex of S. Hence, S is a dominating set of G and the result

follows.

Proposition 2.4: A dom-chromatic set S is minimal if and only if for each u € S, at least
one of the following conditions hold.

6 A(<S - u>) < Y(G).

(ii) S - u is not a dominating set.
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The dom-chromatic number for some standard graphs:
Proposition 2.5:
¢ YalKy) =n
(ii) Ya(nK,) =n;
(iii) Ver(Kinn) = 2
(n+3)/3, ifn=0 (mod3)
(iv) YauP) = (n+2)/3, ifn=1(mod 3)
(n+4)/3, ifn=2(mod3)
) a. If n is odd, then Y, (C,) = n.
b. If n is even, then
(n+3)/3, ifn=0 (mod3)
Ya(C,) = (n+2)/3, ifn=1(mod 3)
+4)/3, ifn=2(mod3)
Vi) Ya(W,) = {3, if n is odd

n, if n is even.

Proposition 2.6: If G is a disconnected graph with k components G,, G, ..., G, then

k
Ya(G) = Ya(Gn) +2. Y(G), where Vy(G,) = TT {Ya(G): X(G) = X(G)}, for
i=1 1<i<k
iFm

me({l, 2..., k}.

Proposition 2.7: If G is any connected graph, then ¥,(G) = p - q if and only if G = K,.

Proof: Necessary condition is trivial. Suppose that Y, (G) = p - q. Since V4(G) = 1,
p - q = 1. Further, as G is connected, p - q<1. Thus, p - q =1 and hence G = K,.

Proposition 2.8: Let D be any dom-chromatic set of G. Then |V - D| < Zdeg(u) .
u€D

Proposition 2.9: Let D be any dom-chromatic set of G. Then |V - D| = Zdeg(u) if and
u€eD

only if G = pK,, p=1.
Proof: If G = pK,, then D = V and deg(u) = 0 for each u € D. Then the equality holds.
Now suppose that [V - D| = Zdeg(u) =k

ueD
Claim: k =0.

Suppose k = 1, then two cases arise.
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Case i: G is connected.
Then Y(G) 2 2. Let V- D = {u, u2 ..., uj. Since D is a dominating set, each u; is
adjacent to a vertex of D and hence, contributes at least one degree to D. Since

X(<D>) = 2, D contains at least one edge which contributes 2 degrees to D. Hence,

Zdeg(u) > k + 2, a contradiction.

u€eD

Case ii: G is disconnected.

If G is totally disconnected, then V = D and hence, |V - D| = k = 0, a contradiction.
Hence, G has a non trivial component and <D> contains at least one edge. Then by a
similar argument as in case (i), a contradiction arises. Thus in both cases, we arrive at a
contradiction, proving that k = 0, ie.,, [V - D| = Zdeg(u) = 0. Therefore, V. = D and

€D

hence, for each u € V, deg(u) = 0. Thus, G is a totally disconnected graph and hence, G =
kK.

Corollary 2.10: For any non trivial connected graph with a dom-chromatic set D,

Zdeg(u) >|V-D|+2.

u€ED

Proof: If G is vertex-color-critical, then V = D and Zdeg(u) =2q=22=|V-D|+2.
u€D

Suppose G is not vertex-color-critical, then since G is non trivial, }(G) = 2. Thus, by a

similar argument as in Case (i) of proposition 2.9, Zdeg(u) > |V - D|+2.

u€D
o p . .
Proposition 2.11: For any graph G, | ———— | < Y4(G) and equality holds if and only
AG)+1
ifG=pK, p21
Proof: From Theorem 2.2, lower bound is trivial. If G = pK, then the result follows.
p .
Suppose | ————— | =Y4(G) =kand D is a Y,-set of G.
AG)+1

Case i: G is connected. If k > 2, then G is a non trivial connected graph. Then by corollary

2.10, |V - D[« Zdeg(u). Thus, p-k < Zdeg(u) < kA(G) and hence, S <k
ueD ueD A(G) +1

Hence, k > P > P = k, a contradiction. Thus, k = 1 and hence,
AG)+1 AG)+1

Yau(G)=1. Therefore, G = K.
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Case ii: G is disconnected.
Suppose G is not totally disconnected, then G has atleast one non trivial component. By a

similar argument as in case (i), contradiction arises. Therefore, G = pK,.

Proposition 2.12:

()If G is a connected graph, then Y ,(G) = p if and only if G is a vertex-color- critical or
G is color-critical graph.

(ii)If G is a disconnected graph, then Y (G) = p if and only if either G is a null graph or
has exactly one non trivial component, which is vertex-color-critical or color-

critical.
3. Main result

In this section, bipartite graphs are studied. Since the dc-number of a bipartite graph is

either Y(G) or Y(G) + 1, graphs with exact bounds are identified. Further certain classes

of graphs whose dc-number is half of their order are found with a given diameter.

Proposition 3.1: Let G be a forest with each component of diameter at most 4. Then

(i) If G has at least one component of diameter 3, then Y, (G) = Y(G).

(ii) If G has at least one component of diameter 4 with its center adjacent to a pendant
vertex, then Y,(G) = Y(G).
(iii) If none of the components satisfy (i) or (ii), then Y, (G) = Y(G) + 1.

Theorem 3.2: If G is a bipartite graph with no isolated vertices, then Y 4(G) < P 1 1and
2

Ya(G) =2+ 1 ifand only if G =F_K,.

2 2
Proof: Since the dc-number of a bipartite graph is either Y(G) or Y(G) + 1, the upper
bound follows. Also, if G is the union of independent edges, then equality holds.

Conversely, suppose that Y ,,(G) =% 4 1 and {V,,V,} be the vertex partition of V.
2

Claim 1: |V |= |V,]

Without loss of generality, let |V,| < |V,]. Then, |V1|<1 . Thus, Y,(G) < [V,| + 1 <P 4,
2 2
a contradiction. Hence |V,|= |V,].

Let S = V, U {x}, x €V,. Then, S is a dom-chromatic set of G and |S| = £ +1. Hence, S
2

is a Y 4-set of G.
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Claim 2: |E (<S>)| =1

Suppose |E (<S>)|= 2, then x is adjacent to more than one vertex of V. Let N ¢ (x) = {x,,
Xp..X}, I'22. Then for eachi, 1 <i<r, S -x; induces a 2-chromatic graph. Since S is
minimal, S - x; cannot be a dominating set of G. Thus, there exists a unique vertex y,EV,

such that x;y; € E_Similarly, as S is maximal, for each z € V| - N[x] there exists a unique

vertex z' € V, such that zz' €E. Then, |V,| 2P_+ 1, a contradiction. Thus, each x € V,,
2

x is adjacent to only one vertex of V|. By claim 1, deg(x) = 1 for each x€V, U V,.
Therefore, G=mK,.

Corollary 3.3: If G is a bipartite graph with no isolated vertices and Y ,,(G) = P 11, then
2

YG) =2,

2

Proposition 3.4:
(i) A bipartite graph G has a dominating edge if and only if ¥ ,,(G) = 2
(ii) If G is a tree of diameter 2 or 3 then, ¥ ,(G) = 2.
Proof:
(i) Let e = xy be a dominating edge of G. Then {x, y} is a Y4-set of G. Conversely
suppose ¥Y,(G) = 2 and S be any Y ,-set of G, then [S| = 2. Since ((<S$>) =2, <S> =K,

Further, S is also a dominating set of G implies G has a dominating edge.

(ii) Since diam(G) = 2 or 3, G has a dominating edge. Then by (i), Y,(G) = 2.

Theorem 3.5: If T is a tree with diam(G) < 4, then Y 4(G) =£ if and only if G is K, 5, P,
2
or a graph in the family given in figure 1.

Proof: Necessary condition is trivial. Suppose that Y, (G) :ﬂ. Clearly, diam(G) = 2.
2

For otherwise, G = K, and then Y ,,(G) = p, a contradiction.

Case i: diam(G) = 2.

Then G =K, n 22, which implies Y,(G) = 2. Then p = 4. Therefore, G = K, ,.

Case ii: diam(G) = 3.

From Proposition 3.5(ii), Y4,(G) = 2. Therefore, p = 4 and hence, G = P,.

Case iii: diam(G) = 4.

Then there exists a unique vertex x such that e(x) = 2. Therefore, N(x) can be partitioned

into three sets as follows:
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S, =1{y € N(x) | deg(y) = 1}

S, ={y € N(x) | deg(y) = 2}

S, ={y € N(x) | deg(y) = 3}

Let|S;|=m, 1<i< 3.

Claim 1: m, > 0, m, > 0 and m; > 0 cannot be simultaneously hold

Suppose not. Then ¥4(G) = m,+ m;+1 and p =1+ m,+ 2m,+ 3m;, a contradiction to
Yal(G) = P,
2

As diam(G) = 4, at least one of m, or m; is not 0.

Claim 2: m, > 0, m, = 0 and m, > 0 cannot simultaneously hold.

Suppose claim does not hold. Then Y, (G)= m; + 1 and p > 3m; + m, + 1, a contradiction.
Sub Case i: m,; >0

By claim 1, one of m, and mj is zero. By claim 2, m, cannot be zero. Hence, m, > 0 and m,
= 0. Since diam(G) = 4, m, > 2 and Y4(T) = m, + 1. Hence, p = 2m, + 2= m,;+2m,+1.
Therefore, m, = 1. Then G is in the family given in Figure 1(a).

Sub Case ii: m, = 0.

Suppose m, = 0. Then m; > 2 and ¥,,(G) = m;+ 1. Therefore, p = 2m; + 2. Also p > 3m,
+ 1 implies 1 2 m;, a contradiction. So let m; = 0. Then, m, = 2 and p = 2m, + 1. This
implies G is a tree with odd number of vertices, a contradiction. Hence, both m, and m,

are not zero. Then Y, (G) = m,+ m; + 1 and hence, p = 2m, + 2m; + 2. Also p = 2m, +

3m, + 1 implies 1 > m;. Therefore, m, = 1 and hence, ¥;,(G) = m,+ 2. Lety € S,. But, p
= 2m, + 4 implies deg(y) = 3. Then G is a tree in the family given in Figure 1(b).

(a) (b)

Figure 1

Theorem 3.6: Suppose G is a forest with each component of diameter 1 or 2. Then

Ya(G)= % if and only if G is either K,,; U mK,, m > 0 or 2P, U mK, , m 2 0.

Proof: Necessary condition can be easily verified. Conversely, suppose Y ,(G)= P Let
2

G,, G, ..., G, r 2 2 be the components of G.

Claim 1: All components cannot be of diameter 1.
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Suppose not. Then G = mK,, m > 1. By Theorem 3.2, Y,(G) = m + 1= L 1, a
2

contradiction.
Case i: All components are of diameter 2.
Then for eachi, 1 <i<r,

G=K,, n>2

= YauG)=r+1 (1)

= p=2r+2 )

Claim 2: G cannot have K|, , n; > 4 as a sub graph.

Ln, >
Suppose G, = KLn1 , N, = 4. From (1), | V(G) | > 3 for each i. Then, p = 5 + 3(r -1) = 3r
+ 2, a contradiction to (2).

Claim 3: G cannot have more than 2 components.

Suppose r = 3. Then p = 3r = 2r + 3, contradiction to (2).

Asr =2, from (2), p = 6. Since both components are of diameter 2, G = 2P, and (ii) holds.
Case ii : G has components of diameter 1 and diameter 2.

Hence, each components is either a K; ,, n 2 2 or a K, . Let r;, r, be the number of
components of K, , and K, respectively. Then Y4(G) = 1, + r, + 1. Therefore,
p=2r+2r,+2 e 3)
Claim 4: r, <2.

Suppose not. Thenp 23 r, +2r, >2r, + 21, + 2, a contradiction to (3).

Suppose r; = 1. Then ¥4,(G) =1, + 2 and p = 2r, + 4. Hence, K, can have only 4 vertices.
Then G =K,; U m K,, m > 0 and (i) holds. If r, = 2, then ¥ ,(G) =r, + 3. Then p = 2r, +

6. Since two K, s with n > 2 and 6 vertices is 2P;, G = 2P; U mK, and (iii) holds.

Theorem 3.7. If G is a forest of even order without isolated vertices and each component

is of diameter at most 3 with at least one component of diameter 3, then Y ,(G) = P if
2

and only if G is

i mP, m>1or
ii. mP, U nK,, m,n>1.

Proof: Necessary condition is easily verified. Suppose ¥, (G) = P Let r;, 1, and r; be

2
number of components of diameter 1, 2 and 3 respectively. Then
p=2r+3r,+4r; e (1)
and >0 )

Claim 1: r, = 0 and r, > 0 cannot hold.
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Suppose not. Then Y4 (G) = r, + 2r; and hence, p = 2r, + 4r;. From (1), p = 4r; + 31,, a
contradiction.

Claim 2: r, > 0 and r, > 0 cannot hold.

Suppose not. Then Y (G) = r, + r, + 2r;, which implies p = 2r, + 2r,+ 4r; a contradiction
to (1).

From claim 1, claim 2 and from (2), only 2 cases are to be considered.

Casei:r,=0and r,=0.

Therefore, Y,(G) = 2r;, and hence, p = 4r,. Since each component has at least 4 vertices, G

=r,;P, and (i) is proved.

Caseii:r;>0,r,=0.

Then Y4, (G) = r, + 2r;, which implies p = 2r, + 4r; and hence, G = r;,P, U r, K, and (ii)
holds.

Theorem 3.8. If G is a forest with isolated vertices and each non-trivial component is of

diameter at most 2 with at least one component of diameter 2, then Y, (G) = £ if and
2
i=k k
only if G = U Kl’n_ U rK, U (z n-k-2)X,n >2foreachi,k>1,r20,
i=1 i=1

Zk: n-k-2>0.
i=1

Proof : Necessary condition is trivial. So suppose ¥ ,(G) = P
2

Case i : All non trivial components are of diameter 2.

Then, G=IL:j K

i=1

U mK,, n; > 2, which implies Y;(G) = k + m + 1. Therefore, p =

Ln;

k k
2k +2m+2. By the structure of G, p = z n; + k + m. Therefore, m = Z n, -k -2and

i=l1 i=l1

satisfies the given condition.

Case ii: G contains non trivial components of diameter 1 and 2.
i=k
Then G = U K,, U1K, U mK,, r>0, m >0. Therefore, ¥,(G) = k + r + m + land
i=1
k
hence, p = 2k + 2r + 2m +2. From the structure of G, p = Z n; + k+2r+ m.
i=1
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k
Therefore, m = Z n,; - k - 2 and the result follows.
i=1

Notation 3.9. P4i is the family of graphs obtained from P, by randomly joining i vertices to

the intermediate vertices. It can be seen that any tree of diameter 3 is P4i ,120.

Theorem 3.10. If G is a forest with isolated vertices and the non-trivial components are of

diameter at most 3 with at least one component of diameter 3, then Y, (G) = P if and
2

only if G is one of the following graphs.

i) U P4l" U 1K, U nK,, rZO,Zli:n

i=1 i=1

N

ii) U PJ‘U ( Kl’n‘) U K, U nK, r 2 0, nj 2 2 for each j and
i=1 = !
m S

ZIi+Z n,= s+n.
j=1

i= J

Proof: Necessary condition is trivial. Suppose Y ,(G) = P
2

Case i: All non trivial components are of diameter 3.

Then G = U P4lf U nK,. Therefore, p = 4m + z L+n AsY4(G)=2m+n, p=
i=1 i=1

m
4m + 2n. Then Z I, = n. Hence, G satisfies (i) with r = 0.

i=l1

Case ii: Non trivial components are of diameter 3 and 1.

i=m m
Then G = U P41‘ U 1K, U nK,. Therefore, p = 4m + Z L +2r + n. As Y4(G) =

= i=l

m
2m+r+n, p=4m + 2r + 2n. Then ZL = n and hence, G satisfies (i) with r > 0.
P

Case iii: Non trivial components are of diameter 3 and 2.
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Then G = U P4l" ) (U K., ) U nK,, n, > 2. This implies that p = 4m + E l, +
Ny
i=1 =1 i=1

Z (n; + 1) + n. But Y4,(G) = 2m + s + n implies p = 4m + 2s + 2n. Therefore, Z L, +
j=1 i=1

S
Z n; = s + n. Then G satisfies (i) with r = 0.
=1

Case iv: Non trivial components are of diameter 3, 2 and 1.

Then, G = U P:iU(U K, )UrKZUnKl,nJZZand hence,p:4m+z L +
oy

i=1 j=1 i=1

z (n; + 1) + 2r+ n. Also, Y(G) = 2m + s + r + n implies p = 4m + 2s + 2r + 2n. This
=1

m

S
leads to Z I + Z n; = s + n. Hence, G satisfies (ii) with r > 0.
i=1 j=1

Theorem 3.11. If G is bipartite, then Y,,(G) = p if and only if either G = K, or G =
K, U (p - 2)K,.
Proof : If G is connected, then Y,,(G) = p if and only if G is vertex-color-critical. Since the

only bipartite vertex-color-critical graph is K,, the result follows. Suppose G is

disconnected. The result follows from Proposition 4.1.7(ii).

Theorem 3.12. Let G be a tree of diameter 5. If at least one of the central elements of G is
adjacent to a pendant vertex, then Y ,(G) = Y(G), otherwise Y 4(G) = Y(G) + 1.

Proof: As diam(G) = 5, G has two central elements and they are adjacent. Let them be x
and y. Then they are adjacent. Let S; = {u |u € N(x) -y}, S, ={u|u € N(y) -x}, S; = {u
|u € S;and d(u) >1}and S, ={u|u € S, and d(u) > 1}.

Case i: Both x and y are not adjacent to any pendant vertices.

Then S, U S, is a Y-set of G and S, U S, U {x} a Y,-set of G. Therefore, ¥,(G) =
Y(G) + 1.

Case ii: x or y is adjacent to a pendant vertex not both.

Suppose x is adjacent to a pendant vertex. Then S, \U S; \U {x} is a Y,-set as well as a

Y-set of G. Therefore, ¥.,(G) = Y(G).

Case iii: Both x and y are adjacent to pendant vertices.
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Then S; U §,\U {x, y} is a Y ,-set as well as a Y-set of G. Therefore, ¥.,(G) = Y(G).

Theorem 3.13. Let G be a tree of diameter 5. Then Y, (G) = ? ifand only of G is a graph
2
in the family of trees given in figure 2.

Proof: Necessary condition is trivial. Suppose Y ,(G) = P Let x and y be the central
2

elements of G. Let S;={u | u € N(x) -y} and S, = {u | u € N(y) - x}.
Case i: Both x and y are not adjacent to any pendant vertices.
Then S, U S, U {x} is Y 4-set of G. Then p = 2(|S,| + [S,| + 1), which implies that G is a

tree in the family given in figure 3(a)

Case ii: At least one of x and y is adjacent to all pendant vertices

First the following claim is proved.

Claim :. Only one of x and y is adjacent to pendant vertices cannot hold.

Suppose not. Let x be adjacent to pendant vertices and y is not. Define S; = {u | u € §;
and d(u) > 1}. Then S, \U S; U {x} is a Y-set of G. Therefore, Y,,(G) = [S,| + |S;| + 1 and
hence, p = 2(|S,| + [S;| +1). Also, from the structure of G, p = 2(|S,| + [Ss]) + 3, a

contradiction.

»
]
<
[

(a) Figure 2 (b)

Hence, by the claim both x and y must be adjacent to pendant vertices. Let S, = {u | u €

S, and d(u) > 1}. Then S, U S, U {x, y} is a Y -set of G. Therefore, ¥ .,(G) = |S;| + |Sy| +
2 and hence, p = 2(|S;| + |S4| + 2). Therefore, G is a tree in the family given in figure 2(b).

Proposition 3.14. If G is a bipartite graph of diameter 2, then Y ,(G) = 2.
Proof : Let xyz be a diameteral path of G. Define 3 sets as follows:
S;= N -y, S;=N(y)-{x 2z}, S;=N(z)-y.Since G is bipartite, all the above 3 sets

induce null graphs. If S, =S, = S; = ¢, then G = K,,and hence, ¥,,(G) = 2. If S, = S, = (1)
and S, # (I), again G is a K, ,, n = 3. Therefore, ¥;,(G) = 2. So suppose S, or S; # (I), say S, .
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Claim: S, = S,.
Letu € §, - S;. Since diam(G) = 2, d(u, z) = 2. As u is not adjacent to y, there exists a v
such that uvz is a path. Then xyzvux is a 5-cycle, a contradiction.

Then {x, y} is a Y 4,-set of G.

Proposition 3.15. Let G be a tree of diameter 3. Then Y 4,(G) = p - A(G) if and only if G =
P, or G is a tree in the family given in figure 3.

Proof : Clearly, Y.,(G) = 2. Suppose, G = P,. Then Y,(G) = 2, p = 4, A(G) = 2 and the
proposition holds. Suppose G is a tree given in Figure 4. Then Y, (G) = 2, p = deg(z) + 2
and A(G) = deg(z). Then the result holds.

Conversely, suppose Y4(G) = p - A(G). Let e = yz be a dominating edge. Then deg(y) > 2
and deg(z) = 2.

Claim : deg(y) = 3 and deg(z) = 3 cannot hold simultaneously.

Case i: deg(y) = deg(z) =2

Then G = P, and the conditions are satisfied.
Case ii: deg(y) = 2 and deg(z) = 3.
Let deg(z) = n = 3. Then A(G) = n and p = n + 2. Therefore, p - A(G) =2 =V4(G) and G

is a tree given in Figure 3.

Figure 3

Proposition 3.16. Suppose G is a bipartite unicyclic graph and for each v € V - V(C),
d(v, C) = 1, then Y4(G) < p - t, where C is the unique cycle and t is the number of

pendent vertices of G. Further the equality holds if and only if deg(v) > 2 for each v €
V(C).

Proof : From the given condition, it is clear that any vertex not in C is adjacent to exactly
one vertex of C and is a pendant vertex. Then V(C) is a dom-chromatic set of G and
|[V(C)|= p - t. This gives the given upper bound. Suppose deg(v) >2 for each v € V(C).
Then V(C) isa Y-set of G, and the bound is attained. Suppose ¥,(G) = p - t. If there

exists a vertex v in C of degree 2, then V(C) - v is a dom-chromatic set of G of cardinality

p - t -1, a contradiction. Thus, deg(v) > 2 for each v € V(C).
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Proposition 3.17. If G is a path, then Y 4(G) = P ifand only if G is P,, P, or Pg.
2

Proof : Necessary condition is trivial. Conversely, suppose Y ,(G) = L
2

Case i: p = 0 (mod 3)
p+3

From Proposition 4.1.5 (iv), V(G) = . Then p = 6.
3

Case ii: p =1 (mod 3)

. . p+2

From Proposition 4.1.5(iv), Y.,(G) = . Thenp =4.
3

Case ii: p = 2 (mod 3)

From Proposition 4.1.5(iv), Y,(G) = P4 Then p=8.

3

Proposition 3.18. If G is an even cycle, then ¥, (G) = P ifand only if G is C,, C,, or C.
2

Theorem 3.19. If G is any (p, q) graph, q > 1, then ¥,(G) = p - q + 1 if and only if G

contains exactly Y,(G) -1 components and exactly one of the following holds.
i. each component is isomorphic to K, s, s 2 0
ii. exactly one component is a tree with diameter 3 or K; , t = 1 and every other

component is isomorphic to K, ’s, m =2 0
Proof: Suppose G has Y,(G) - 1 components with (i) or (ii) is satisfied. Let Y4(G) - 1 = k
and G = G,U G, U .. UG, Let each G; be a (p;, q;)-graph. Then in both cases, ¥ ,(G) =
k+1landq= i qi= i (pi- 1) =p - kand hence, Y, (G) =p-q+ L
i=1 i=1
Conversely, suppose ¥,(G) = p - q + 1. Suppose G has k components.
Claim 1: k = Y,(G) - 1.
Since q 2 1, (G) = 2 and a Y ,,-set contains at least one vertex from each component,
k+1<Y,(G) e (1)

Since each component is connected, q = p - k, and thus, k > p - q = ¥4(G) - 1. Therefore,
k+ 12 Y4(G). Therefore, from (1), k + 1 =Y, (G).

Let G;, G,,...,G, be the components of G. Without loss of generality, let Y ,(G,) =
gn}; {Ya(G) IX(G) = X(G) }. From Claim 1, Y4,(G) - 1 =k.

Claim 2: ¥, (G)) =2 and Y, (G) =1, i= 2.
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k
Since G contains an edge, ¥ ,(G,) = 2. Suppose Y,(G,) = 3 . By Claim 1, z Y(G) 2k -

i=2

k
1> Y4(G) - 2 and therefore, Y(G) = Yau(G) + . Y(G) = Yu(G) + 1, a

i=2
contradiction.

k k
Thus, Y(G)) = 2. Now Yo(G) =2 + Y Y(G) . Therefore, ) Y(G) = Ya(G) -2 = k- 1.

i=2 i=2

Y(G) = 1, for each i.

Claim3: Each G; is a tree.

k
Suppose G contains a cycle. Then q; > p;and q; > p; - 1 for each i # j. Now, q = z qi =

i=1

k k k
G+ 2 azp+ 2, (p-D=2 pi-(k-1D=p- YalG +2.
oy oy -
Thus, ¥Y,,(G) 2 p - q + 2, a contradiction.
Each G; is a tree and Y(G;) = 1 imply that G; =K, ,, s >0 for each i# 1. Since G, =K, , s 2

0 and Y,(G,) = 2 imply that either G, is a K, ,, s 2 1 or a tree with diameter 3.

Theorem 3.20. If T is a tree with diam(T) = 4 and k is the number of non pendant vertices
of T, then Y, (T) = k.

Proof : Since diam(T) = 4, T has unique center. Let u be the center of Tand S = {x | x €
N(u), deg(x) = 2 }. If u is adjacent to a pendant vertex, then S \U {u} is a Y,-set of T.
Hence, Y,(T) is the number of non pendant vertices of T and let it be k. If u is not

adjacent to any pendant vertex, then again S U {u} is a Y;,-set of T and the result follows.

Proposition 3.21. If G is a tree of diameter 3, then Y 4(G) = ’Ych(a ) if and only if G = P,.
Proof : If G is P,, then the result is trivial. Conversely suppose Y ,,(G) = ych(E ). Let the
dominating edge of G be e = uv. Let deg(u) = m and deg(v) = n. Also in 6 s (N(u) -v) U
(N(v) -v)isaK,,,, and X(E) =m + n - 2. Clearly, the above set is dominatinga . Hence,
ych(E) =m + n - 2. Since ¥V 4(G) = ych(E ), m + n =4 and the result follows.
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Proposition 3.22. If G and G , both bipartite with diameter 3, then Y (G) = Y4(G) if
and only if G=P,.

Solution: If G = P,, then from Proposition 3.21, the equality holds. Conversely let the
equality hold and uvwx be a diameteral path in G. Then N(v) and N(w) induce null
graphs. Further, as G is bipartite both N(v) and N(w) are of cardinality 2.

Case i: both u and x are pendant vertices.

Then G = P, and hence, G is P,.

ase ii: at least one of u and x is non pendant vertex.

Suppose u is a non pendant vertex and then by similar argument |[N(u)| = 2 and N(u) is a
null graph. Let N(u) = {v, u;}. Clearly, u, is not adjacent to x, otherwise a 5-cycle is
induced. Then

{ u;, v, x} induces C;, a contradiction.

Thus, from case i and ii, a solution is obtained only when G is P,.

Theorem 3.23. If G is a tree of diameter 3, then Y ,,(G) + Vg (E) =p.

Since G is a tree of diameter 3, G has a dominating edge. Therefore, ¥.,(G) = 2. Let uv be

the dominating edge of G and V,, V, be the set of pendant vertices adjacent to u and v

respectively. Then in G, <V, \UV,> induces a complete graph K, , and, u and v are non

adjacent. Further u is adjacent to each vertex of V, and v is adjacent to each vertex of V,

ina . Thus, V, UV, is a Y 4-set of E Therefore, Y, (E) =p - 2and (i) follows.
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