International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 2, April –June 2010, pp. 80-95

Dom-Chromatic Sets in Bipartite Graphs

T. N. Janakiraman¹ and M. Poobalaranjani²

¹Department of Mathematics, National Institute of Technology, Tiruchirappalli-620015, India. Email: tnjraman2000@yahoo.com, janaki@nitt.edu

²Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli-620002, India

Email: mpranjani@hotmail.com, mpranjani28@gmail.com

Abstract: Let G be a simple graph with vertex set V and edge set E. A subset S of V is said to be a domchromatic set (or dc-set) if S is a dominating set and the chromatic number of the graph induced by S is the chromatic number of G. The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) and is denoted by $\gamma_{cb}(G)$. In this paper, bounds for domchromatic numbers for bipartite graphs are discussed.

Keywords: Dominating set, domination number, dom-chromatic set (or dc-set), dom-chromatic number (or dc-number).

1. Introduction

In this paper, we discuss finite, simple undirected graphs. For any graph G, V denotes the vertex set, E denotes the edge set and p denotes the number of vertices. For any graph theoretic terminology which is not defined refer to Harary [2].

The chromatic number $\chi(G)$ is the minimum k such that vertices of G is properly kcolorable. A graph G is said to be a vertex-color-critical graph if $\chi(G - u) < \chi(G)$ for every $u \in V$ and edge-critical if $\chi(G - e) < \chi(G)$ for every $e \in E$. Clearly, edge-critical graphs are vertex-color-critical. In general, any element t of the set $V(G) \cup E(G)$ is critical if $\chi(G - t) < \chi(G)$. A graph is called a color-critical graph if each of its vertices and edges are critical. It is to be noted that the only k-critical graphs for k = 1, 2 and 3 are K_1, K_2 and odd cycles, respectively.

A set $S \subseteq V$ is a dominating set of G if for each $u \in V - S$, there exists a vertex $v \in S$ such that u is adjacent to v. The minimum cardinality of a dominating set in G is called the domination number of G, denoted by $\gamma(G)$. Harary and Haynes [3] defined the conditional domination number $\gamma(G: P)$ as the smallest cardinality of a dominating set S $\subseteq V$ such that the sub graph $\langle S \rangle$ induced by S satisfies a graph property P. A dominating set S $\subseteq V$ of G is a global dominating set if S is also a dominating set in the complement \overline{G} of G.

Received: 09 June, 2009; Revised: 27 October, 2009; Accepted: 14 December, 2009

In this paper, we introduce a new conditional dominating set called dom-chromatic set or simply a dc-set which combines domination and coloring property of a graph. A subset S of V is said to be a dom-chromatic set (or dc-set) if S is a dominating set and $\chi(\langle S \rangle) = \chi(G)$. The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) and is denoted by $\gamma_{ch}(G)$.

2. Preliminary results

This section contains some results about domination and some preliminary results on dom-chromatic number which will be used in the next section to prove the main result.

Theorem 2.1 [5, pp 41]: If a graph G has no isolated vertices, then
$$\gamma(G) \le \left\lfloor \frac{p}{2} \right\rfloor$$

Theorem 2.2: [5, pp 50]: For any graph G, $\left\lfloor \frac{p}{\Delta(G)+1} \right\rfloor \le \gamma(G) \le p - \Delta(G)$.

In a dom-chromatic set, the following observations are made.

Observation 2.3:

- (i) Dom-chromatic set exists for all graphs.
- (ii) Vertex set V is a trivial dom-chromatic set.
- (iii) If S is a dom-chromatic set of G, then each vertex of V S is not adjacent to at least one vertex of S.
- (iv) A dom-chromatic set of a graph is a global dominating set.

Proof:

(i) and (ii) follow trivially.

(iii) Suppose S is a dom-chromatic such that $x \in V - S$ is adjacent to each vertex of S, then $\chi(G) \ge \chi(\langle S \rangle) + 1 = \chi(G) + 1$ which is a contradiction.

(iv) Let S be a dom-chromatic of a graph G. From (iii), in G each vertex of V – S is adjacent to at least one vertex of S. Hence, S is a dominating set of \overline{G} and the result follows.

Proposition 2.4: A dom-chromatic set S is minimal if and only if for each $u \in S$, at least one of the following conditions hold.

- (i) $\chi(\langle S u \rangle) \langle \chi(G).$
- (ii) S u is not a dominating set.

The dom-chromatic number for some standard graphs: **Proposition 2.5:**

$$\begin{array}{lll} (i) & \gamma_{ch}(K_n) &= n \\ (ii) & \gamma_{ch}(nK_1) &= n; \\ (iii) & \gamma_{ch}(K_{m,n}) &= 2 \\ (iv) & \gamma_{ch}(P_n) &= \left\{ \begin{array}{ll} (n+3)/3, & \mbox{if } n \equiv 0 \ (mod \ 3) \\ (n+2)/3, & \mbox{if } n \equiv 1 \ (mod \ 3) \\ (n+4)/3, & \mbox{if } n \equiv 2 \ (mod \ 3) \end{array} \right. \\ (v) & \mbox{a. If } n \ \mbox{is odd, then } \gamma_{ch}(C_n) &= n. \\ & \mbox{b. If } n \ \mbox{is even, then} \end{array}$$

$$\gamma_{ch}(C_n) = \begin{cases} (n+3)/3, & \text{if } n \equiv 0 \pmod{3} \\ (n+2)/3, & \text{if } n \equiv 1 \pmod{3} \\ (n+4)/3, & \text{if } n \equiv 2 \pmod{3} \end{cases}$$
(vi) $\gamma_{ch}(W_n) = \begin{cases} 3, & \text{if } n \text{ is odd} \\ n, & \text{if } n \text{ is even.} \end{cases}$

Proposition 2.6: If G is a disconnected graph with k components $G_1, G_2 ..., G_k$, then $\gamma_{ch}(G) = \gamma_{ch}(G_m) + \sum_{\substack{i=1 \ i \neq m}}^k \gamma(G_i)$, where $\gamma_{ch}(G_m) = \min_{1 \leq i \leq k} \{\gamma_{ch}(G_i): \chi(G_i) = \chi(G)\}$, for

 $m \in \{1, 2..., k\}.$

Proposition 2.7: If G is any connected graph, then $\gamma_{ch}(G) = p - q$ if and only if $G = K_1$. **Proof:** Necessary condition is trivial. Suppose that $\gamma_{ch}(G) = p - q$. Since $\gamma_{ch}(G) \ge 1$, $p - q \ge 1$. Further, as G is connected, $p - q \le 1$. Thus, p - q = 1 and hence $G = K_1$.

Proposition 2.8: Let D be any dom-chromatic set of G. Then $|V - D| \le \sum_{u \in D} deg(u)$.

Proposition 2.9: Let D be any dom-chromatic set of G. Then $|V - D| = \sum deg(u)$ if and only if $G = pK_1, p \ge 1$.

Proof: If $G = pK_1$, then D = V and deg(u) = 0 for each $u \in D$. Then the equality holds. Now suppose that $|V - D| = \sum_{u \in D} \deg(u) = k$.

<u>Claim:</u> k = 0.

Suppose $k \ge 1$, then two cases arise.

Case i: G is connected.

Then $\chi(G) \ge 2$. Let V – D = {u₁, u2 ..., u_k}. Since D is a dominating set, each u_i is adjacent to a vertex of D and hence, contributes at least one degree to D. Since $\chi(\langle D \rangle) \ge 2$, D contains at least one edge which contributes 2 degrees to D. Hence, $\sum deg(u) \ge k + 2$, a contradiction.

Case ii: G is disconnected.

If G is totally disconnected, then V = D and hence, |V - D| = k = 0, a contradiction. Hence, G has a non trivial component and $\langle D \rangle$ contains at least one edge. Then by a similar argument as in case (i), a contradiction arises. Thus in both cases, we arrive at a contradiction, proving that k = 0, i.e., $|V - D| = \sum_{u \in D} deg(u) = 0$. Therefore, V = D and

hence, for each $u \in V$, deg(u) = 0. Thus, G is a totally disconnected graph and hence, G = kK_1 .

Corollary 2.10: For any non trivial connected graph with a dom-chromatic set D, $\sum_{u \in D} deg(u) \ge |V - D| + 2.$

Proof: If G is vertex-color-critical, then V = D and $\sum_{u \in D} deg(u) = 2q \ge 2 = |V - D| + 2$.

Suppose G is not vertex-color-critical, then since G is non trivial, $\chi(G) \ge 2$. Thus, by a similar argument as in Case (i) of proposition 2.9, $\sum_{u \in D} deg(u) \ge |V - D| + 2$.

Proposition 2.11: For any graph G, $\left\lfloor \frac{p}{\Delta(G)+1} \right\rfloor \leq \gamma_{ch}(G)$ and equality holds if and only

if $G = pK_{1}$, $p \ge 1$.

Proof: From Theorem 2.2, lower bound is trivial. If $G = pK_1$, then the result follows. Suppose $\left| \frac{p}{\Delta(G) + 1} \right| = \gamma_{ch}(G) = k$ and D is a γ_{ch} -set of G.

<u>Case i:</u> G is connected. If $k \ge 2$, then G is a non trivial connected graph. Then by corollary

2.10,
$$|V - D| < \sum_{u \in D} \deg(u)$$
. Thus, $p - k < \sum_{u \in D} \deg(u) \le k\Delta(G)$ and hence, $\frac{p}{\Delta(G) + 1} < k$.

Hence, $k > \frac{p}{\Delta(G) + 1} \ge \left\lfloor \frac{p}{\Delta(G) + 1} \right\rfloor = k$, a contradiction. Thus, k = 1 and hence,

 $\gamma_{ch}(G)=1$. Therefore, $G = K_1$.

Case ii: G is disconnected.

Suppose G is not totally disconnected, then G has atleast one non trivial component. By a similar argument as in case (i), contradiction arises. Therefore, $G = pK_1$.

Proposition 2.12:

- (i) If G is a connected graph, then $\gamma_{ch}(G) = p$ if and only if G is a vertex-color- critical or G is color-critical graph.
- (ii) If G is a disconnected graph, then $\gamma_{ch}(G) = p$ if and only if either G is a null graph or has exactly one non trivial component, which is vertex-color-critical or colorcritical.

3. Main result

In this section, bipartite graphs are studied. Since the dc-number of a bipartite graph is either $\gamma(G)$ or $\gamma(G) + 1$, graphs with exact bounds are identified. Further certain classes of graphs whose dc-number is half of their order are found with a given diameter.

Proposition 3.1: Let G be a forest with each component of diameter at most 4. Then

- (i) If G has at least one component of diameter 3, then $\gamma_{ch}(G) = \gamma(G)$.
- (ii) If G has at least one component of diameter 4 with its center adjacent to a pendant vertex, then $\gamma_{ch}(G) = \gamma(G)$.
- (iii) If none of the components satisfy (i) or (ii), then $\gamma_{ch}(G) = \gamma(G) + 1$.

Theorem 3.2: If G is a bipartite graph with no isolated vertices, then $\gamma_{ch}(G) \leq \frac{p}{q} + 1$ and

 $\gamma_{ch}(G) = \frac{p}{2} + 1$ if and only if $G = \frac{p}{2} K_2$.

Proof: Since the dc-number of a bipartite graph is either $\gamma(G)$ or $\gamma(G) + 1$, the upper bound follows. Also, if G is the union of independent edges, then equality holds. Conversely, suppose that $\gamma_{ch}(G) = \frac{p}{2} + 1$ and $\{V_1, V_2\}$ be the vertex partition of V.

Claim 1:
$$|V_1| = |V_2|$$

Without loss of generality, let $|V_1| < |V_2|$. Then, $|V_1| < \frac{p}{2}$. Thus, $\gamma_{ch}(G) \le |V_1| + 1 < \frac{p}{2} + 1$, a contradiction. Hence $|V_1| = |V_2|$.

Let S = V₁ \cup {x}, x \in V₂. Then, S is a dom-chromatic set of G and $|S| = \frac{p}{2} + 1$. Hence, S is a γ_{ch} -set of G.

<u>Claim 2:</u> |E(<S>)| = 1

Suppose $|E(\langle S \rangle)| \ge 2$, then x is adjacent to more than one vertex of V_1 . Let $N_{\langle S \rangle}(x) = \{x_1, x_2, ..., x_r\}$, $r \ge 2$. Then for each i, $1 \le i \le r$, $S - x_i$ induces a 2-chromatic graph. Since S is minimal, $S - x_i$ cannot be a dominating set of G. Thus, there exists a unique vertex $y_i \in V_2$ such that $x_i y_i \in E$. Similarly, as S is maximal, for each $z \in V_1 - N[x]$ there exists a unique vertex $z' \in V_2$ such that $zz' \in E$. Then, $|V_2| \ge \frac{p}{2} + 1$, a contradiction. Thus, each $x \in V_2$, x is adjacent to only one vertex of V_1 . By claim 1, deg(x) = 1 for each $x \in V_1 \cup V_2$. Therefore, $G=mK_2$.

Corollary 3.3: If G is a bipartite graph with no isolated vertices and $\gamma_{ch}(G) = \frac{p}{2} + 1$, then

$$\gamma(G) = \frac{r}{2}$$
.

Proposition 3.4:

(i) A bipartite graph G has a dominating edge if and only if $\gamma_{ch}(G) = 2$

(ii) If G is a tree of diameter 2 or 3 then, $\gamma_{ch}(G) = 2$.

Proof:

(i) Let e = xy be a dominating edge of G. Then $\{x, y\}$ is a γ_{ch} -set of G. Conversely suppose $\gamma_{ch}(G) = 2$ and S be any γ_{ch} -set of G, then |S| = 2. Since $\chi(\langle S \rangle) = 2$, $\langle S \rangle = K_2$. Further, S is also a dominating set of G implies G has a dominating edge.

(ii) Since diam(G) = 2 or 3, G has a dominating edge. Then by (i), $\gamma_{ch}(G) = 2$.

Theorem 3.5: If T is a tree with diam(G) ≤ 4 , then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is $K_{1,3}$, P_4 or a graph in the family given in figure 1.

Proof: Necessary condition is trivial. Suppose that $\gamma_{ch}(G) = \frac{p}{2}$. Clearly, diam(G) ≥ 2 .

For otherwise, $G = K_2$ and then $\gamma_{ch}(G) = p$, a contradiction. <u>Case i:</u> diam(G) = 2.

Then G = K_{1,n}, $n \ge 2$, which implies $\gamma_{ch}(G) = 2$. Then p = 4. Therefore, G = K_{1,3}. Case ii: diam(G) = 3.

From Proposition 3.5(ii), $\gamma_{ch}(G) = 2$. Therefore, p = 4 and hence, $G = P_4$.

<u>Case iii:</u> diam(G) = 4.

Then there exists a unique vertex x such that e(x) = 2. Therefore, N(x) can be partitioned into three sets as follows:

 $S_1 = \{y \in N(x) \mid deg(y) = 1\}$ $S_2 = \{y \in N(x) \mid deg(y) = 2\}$ $S_3 = \{y \in N(x) \mid deg(y) \ge 3\}$

Let $|S_i| = m_i, 1 \le i \le 3$.

<u>Claim 1</u>: $m_1 > 0$, $m_2 > 0$ and $m_3 > 0$ cannot be simultaneously hold

Suppose not. Then $\gamma_{ch}(G) = m_2 + m_3 + 1$ and $p \ge 1 + m_1 + 2m_2 + 3m_3$, a contradiction to

$$\gamma_{ch}(G) = \frac{p}{2}$$

As diam(G) = 4, at least one of m_2 or m_3 is not 0.

<u>Claim 2</u>: $m_1 > 0$, $m_2 = 0$ and $m_3 > 0$ cannot simultaneously hold.

Suppose claim does not hold. Then $\gamma_{ch}(G) = m_3 + 1$ and $p \ge 3m_3 + m_1 + 1$, a contradiction. Sub Case i: $m_1 > 0$

By claim 1, one of m_2 and m_3 is zero. By claim 2, m_2 cannot be zero. Hence, $m_2 > 0$ and m_3 = 0. Since diam(G) = 4, $m_2 \ge 2$ and $\gamma_{ch}(T) = m_2 + 1$. Hence, $p = 2m_2 + 2 = m_1 + 2m_2 + 1$. Therefore, $m_1 = 1$. Then G is in the family given in Figure 1(a). **<u>Sub Case ii:</u>** $m_1 = 0$.

Suppose $m_2 = 0$. Then $m_3 \ge 2$ and $\gamma_{ch}(G) = m_3 + 1$. Therefore, $p = 2m_3 + 2$. Also $p \ge 3m_3$ + 1 implies $1 \ge m_3$, a contradiction. So let $m_3 = 0$. Then, $m_2 \ge 2$ and $p = 2m_2 + 1$. This implies G is a tree with odd number of vertices, a contradiction. Hence, both m₂ and m₃ are not zero. Then $\gamma_{ch}(G) = m_2 + m_3 + 1$ and hence, $p = 2m_2 + 2m_3 + 2$. Also $p \ge 2m_2 + 2m_3 + 2$. $3m_3 + 1$ implies $1 \ge m_3$. Therefore, $m_3 = 1$ and hence, $\gamma_{ch}(G) = m_2 + 2$. Let $y \in S_3$. But, p = $2m_2$ + 4 implies deg(y) = 3. Then G is a tree in the family given in Figure 1(b).

Theorem 3.6: Suppose G is a forest with each component of diameter 1 or 2. Then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is either $K_{1,3} \cup mK_2$, m > 0 or $2P_3 \cup mK_2$, $m \ge 0$.

Proof: Necessary condition can be easily verified. Conversely, suppose $\gamma_{ch}(G) = \frac{p}{2}$. Let $G_1, G_2 \dots, G_r, r \ge 2$ be the components of G.

Claim 1: All components cannot be of diameter 1.

Suppose not. Then $G = mK_2$, $m \ge 1$. By Theorem 3.2, $\gamma_{ch}(G) = m + 1 = \frac{p}{2} + 1$, a contradiction. Case i: All components are of diameter 2. Then for each i, $1 \le i \le r$, $G_i = K_{1,n_i}$ $n_i \ge 2$ $\Rightarrow \gamma_{ch}(G) = r + 1$ -------(1)

$$\Rightarrow \quad p = 2r + 2 \tag{2}$$

<u>Claim 2</u>: G cannot have $K_{1,n}$, $n_i \ge 4$ as a sub graph.

Suppose $G_1 = K_{1,n_1}$, $n_1 \ge 4$. From (1), $|V(G_i)| \ge 3$ for each i. Then, $p \ge 5 + 3(r-1) = 3r + 2$, a contradiction to (2).

Claim 3: G cannot have more than 2 components.

Suppose $r \ge 3$. Then $p \ge 3r \ge 2r + 3$, contradiction to (2).

As r = 2, from (2), p = 6. Since both components are of diameter 2, $G = 2P_3$ and (ii) holds. Case ii : G has components of diameter 1 and diameter 2.

Hence, each components is either a $K_{1, n}$, $n \ge 2$ or a K_2 . Let r_1 , r_2 be the number of components of $K_{1,n}$ and K_2 respectively. Then $\gamma_{ch}(G) = r_1 + r_2 + 1$. Therefore, $p = 2 r_1 + 2 r_2 + 2$ (3)

<u>Claim 4:</u> $r_1 \leq 2$.

Suppose not. Then $p \ge 3 r_1 + 2 r_2 > 2 r_1 + 2 r_2 + 2$, a contradiction to (3).

Suppose $r_1 = 1$. Then $\gamma_{ch}(G) = r_2 + 2$ and $p = 2r_2 + 4$. Hence, $K_{1,n}$ can have only 4 vertices. Then $G = K_{1,3} \cup m K_2$, m > 0 and (i) holds. If $r_1 = 2$, then $\gamma_{ch}(G) = r_2 + 3$. Then $p = 2r_2 + 6$. Since two $K_{1,n}$'s with $n \ge 2$ and 6 vertices is $2P_3$, $G = 2P_3 \cup mK_2$ and (iii) holds.

Theorem 3.7. If G is a forest of even order without isolated vertices and each component is of diameter at most 3 with at least one component of diameter 3, then $\gamma_{ch}(G) = \frac{p}{2}$ if

and only if G is

i. mP_4 , m > 1 or

ii. $mP_4 \cup nK_2$, m, $n \ge 1$.

Proof: Necessary condition is easily verified. Suppose $\gamma_{ch}(G) = \frac{p}{2}$. Let r_1 , r_2 and r_3 be number of components of diameter 1, 2 and 3 respectively. Then

	$\mathbf{p} \ge 2\mathbf{r}_1 + 3\mathbf{r}_2 + 4\mathbf{r}_3$	 (1)
and	$r_{3} > 0$	 (2)
Claim 1.	r = 0 and $r > 0$ cannot hold	

<u>Claim 1</u>: $r_1 = 0$ and $r_2 > 0$ cannot hold.

Suppose not. Then $\gamma_{ch}(G) = r_2 + 2r_3$ and hence, $p = 2r_2 + 4r_3$. From (1), $p \ge 4r_3 + 3r_2$, a contradiction.

<u>Claim 2</u>: $r_1 > 0$ and $r_2 > 0$ cannot hold.

Suppose not. Then $\gamma_{ch}(G) = r_1 + r_2 + 2r_3$, which implies $p = 2r_1 + 2r_2 + 4r_3$ a contradiction to (1).

From claim 1, claim 2 and from (2), only 2 cases are to be considered.

<u>Case i:</u> $r_1 = 0$ and $r_2 = 0$.

Therefore, $\gamma_{ch}(G) = 2r_3$, and hence, $p = 4r_3$. Since each component has at least 4 vertices, G = r_3P_4 and (i) is proved.

Case ii :
$$r_1 > 0$$
, $r_2 = 0$.

Then $\gamma_{ch}(G) = r_1 + 2r_3$, which implies $p = 2r_1 + 4r_3$ and hence, $G = r_3P_4 \cup r_1 K_2$ and (ii) holds.

Theorem 3.8. If G is a forest with isolated vertices and each non-trivial component is of diameter at most 2 with at least one component of diameter 2, then $\gamma_{ch}(G) = \frac{p}{2}$ if and

only if
$$G = \bigcup_{i=1}^{i=k} K_{1,n_i} \cup rK_2 \cup (\sum_{i=1}^{k} n_i - k - 2)K_1, n_i \ge 2$$
 for each i, $k \ge 1, r \ge 0$,

$$\sum_{i=1}^k \quad n_i - k - 2 > 0.$$

Proof : Necessary condition is trivial. So suppose $\gamma_{ch}(G) = \frac{p}{2}$.

Case i : All non trivial components are of diameter 2.

Then, $G = \bigcup_{i=1}^{i=k} K_{1,n_i} \cup mK_1$, $n_i \ge 2$, which implies $\gamma_{ch}(G) = k + m + 1$. Therefore, p = 2k + 2m + 2. By the structure of G, $p = \sum_{i=1}^{k} n_i + k + m$. Therefore, $m = \sum_{i=1}^{k} n_i - k - 2$ and

satisfies the given condition.

Case ii: G contains non trivial components of diameter 1 and 2.

Then G = $\bigcup_{i=1}^{i=k} K_{1,n_i} \cup rK_2 \cup mK_1$, r >0, m >0. Therefore, $\gamma_{ch}(G) = k + r + m + 1$ and

hence, p = 2k + 2r + 2m + 2. From the structure of G, $p = \sum_{i=1}^{k} n_i + k + 2r + m$.

International Journal of Engineering Science, Advanced Computing and Bio-Technology

Therefore,
$$m = \sum_{i=1}^{k} n_i - k - 2$$
 and the result follows.

Notation 3.9. P_4^i is the family of graphs obtained from P_4 by randomly joining i vertices to the intermediate vertices. It can be seen that any tree of diameter 3 is P_4^i , $i \ge 0$.

Theorem 3.10. If G is a forest with isolated vertices and the non-trivial components are of diameter at most 3 with at least one component of diameter 3, then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is one of the following graphs.

i)
$$\bigcup_{i=1}^{i=m} P_4^{l_i} \cup rK_2 \cup nK_1, r \ge 0, \sum_{i=1}^{m} l_i = n$$

ii)
$$\bigcup_{i=1}^{i=m} P_4^{l_i} \cup (\bigcup_{j=1}^{s} K_{1,n_j}) \cup rK_2 \cup nK_1, r \ge 0, n_j \ge 2 \text{ for each } j \text{ and}$$

$$\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} n_j = s + n.$$

Proof: Necessary condition is trivial. Suppose $\gamma_{ch}(G) = \frac{p}{2}$. <u>Case i</u>: All non trivial components are of diameter 3.

Then $G = \bigcup_{i=1}^{i=m} P_4^{l_i} \cup nK_1$. Therefore, $p = 4m + \sum_{i=1}^{m} l_i + n$. As $\gamma_{ch}(G) = 2m + n$, p = 1

4m + 2n. Then $\sum_{i=1}^{m} l_i = n$. Hence, G satisfies (i) with r = 0.

Case ii: Non trivial components are of diameter 3 and 1.

Then G =
$$\bigcup_{i=1}^{i=m} P_4^{l_i} \cup rK_2 \cup nK_1$$
. Therefore, p = 4m + $\sum_{i=1}^{m} l_i + 2r + n$. As $\gamma_{ch}(G) = 0$

2m + r + n, p = 4m + 2r + 2n. Then $\sum_{i=1}^{m} l_i = n$ and hence, G satisfies (i) with r > 0.

Case iii: Non trivial components are of diameter 3 and 2.

Dom-Chromatic Sets in Bipartite Graphs 90

Then
$$G = \bigcup_{i=1}^{i=m} P_4^{l_i} \cup (\bigcup_{j=1}^{s} K_{1,n_j}) \cup nK_1, n_j \ge 2$$
. This implies that $p = 4m + \sum_{i=1}^{m} l_i + \sum_{j=1}^{s} (n_j + 1) + n$. But $\gamma_{ch}(G) = 2m + s + n$ implies $p = 4m + 2s + 2n$. Therefore, $\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} n_j = s + n$. Then G satisfies (ii) with $r = 0$.

j=1

Case iv: Non trivial components are of diameter 3, 2 and 1.

Then,
$$G = \bigcup_{i=1}^{l=m} P_4^{l_i} \cup (\bigcup_{j=1}^s K_{1,n_j}) \cup rK_2 \cup nK_1, n_j \ge 2$$
 and hence, $p = 4m + \sum_{i=1}^m l_i + \sum_{i=1}^m l_i = 1$

$$\sum_{j=1}^{s} (n_j + 1) + 2r + n. \text{ Also, } \gamma_{ch}(G) = 2m + s + r + n \text{ implies } p = 4m + 2s + 2r + 2n. \text{ This}$$

leads to
$$\sum_{i=1}^{m} l_i + \sum_{j=1}^{s} n_j = s + n$$
. Hence, G satisfies (ii) with $r > 0$.

Theorem 3.11. If G is bipartite, then $\gamma_{ch}(G) = p$ if and only if either $G = K_2$ or G = $K_2 \cup (p - 2)K_1$.

Proof : If G is connected, then $\gamma_{ch}(G) = p$ if and only if G is vertex-color-critical. Since the only bipartite vertex-color-critical graph is K_2 , the result follows. Suppose G is disconnected. The result follows from Proposition 4.1.7(ii).

Theorem 3.12. Let G be a tree of diameter 5. If at least one of the central elements of G is adjacent to a pendant vertex, then $\gamma_{ch}(G) = \gamma(G)$, otherwise $\gamma_{ch}(G) = \gamma(G) + 1$.

Proof: As diam(G) = 5, G has two central elements and they are adjacent. Let them be x and y. Then they are adjacent. Let $S_1 = \{u \mid u \in N(x) - y\}, S_2 = \{u \mid u \in N(y) - x\}, S_3 = \{u \mid u \in N(y) - x\}, S_3 = \{u \mid u \in N(y) - x\}, S_3 = \{u \mid u \in N(y) - x\}, S_3 = \{u \mid u \in N(y) - y\}, S_3 = \{$ $| u \in S_1 \text{ and } d(u) > 1 \}$ and $S_4 = \{u | u \in S_2 \text{ and } d(u) > 1 \}$.

Case i: Both x and y are not adjacent to any pendant vertices.

Then $S_1 \cup S_2$ is a γ -set of G and $S_1 \cup S_2 \cup \{x\}$ a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G) =$ $\gamma(G) + 1.$

Case ii: x or y is adjacent to a pendant vertex not both.

Suppose x is adjacent to a pendant vertex. Then $S_2 \cup S_3 \cup \{x\}$ is a $\gamma_{ch}\text{-set}$ as well as a γ -set of G. Therefore, $\gamma_{ch}(G) = \gamma(G)$.

Case iii: Both x and y are adjacent to pendant vertices.

Then $S_3 \cup S_4 \cup \{x, y\}$ is a γ_{ch} -set as well as a γ -set of G. Therefore, $\gamma_{ch}(G) = \gamma(G)$.

Theorem 3.13. Let G be a tree of diameter 5. Then $\gamma_{ch}(G) = \frac{p}{2}$ if and only of G is a graph in the family of trees given in figure 2.

Proof: Necessary condition is trivial. Suppose $\gamma_{ch}(G) = \frac{p}{2}$. Let x and y be the central

elements of G. Let $S_1 = \{u \mid u \in N(x) - y\}$ and $S_2 = \{u \mid u \in N(y) - x\}$. Case i: Both x and y are not adjacent to any pendant vertices.

Then $S_1 \cup S_2 \cup \{x\}$ is γ_{ch} -set of G. Then $p = 2(|S_1| + |S_2| + 1)$, which implies that G is a tree in the family given in figure 3(a)

Case ii: At least one of x and y is adjacent to all pendant vertices

First the following claim is proved.

<u>Claim</u>: Only one of x and y is adjacent to pendant vertices cannot hold.

Suppose not. Let x be adjacent to pendant vertices and y is not. Define $S_3 = \{u \mid u \in S_1 \text{ and } d(u) > 1\}$. Then $S_2 \cup S_3 \cup \{x\}$ is a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G) = |S_2| + |S_3| + 1$ and hence, $p = 2(|S_2| + |S_3| + 1)$. Also, from the structure of G, $p \ge 2(|S_2| + |S_3|) + 3$, a contradiction.

Hence, by the claim both x and y must be adjacent to pendant vertices. Let $S_4 = \{u \mid u \in S_2 \text{ and } d(u) > 1\}$. Then $S_3 \cup S_4 \cup \{x, y\}$ is a γ_{ch} -set of G. Therefore, $\gamma_{ch}(G) = |S_3| + |S_4| + 2$ and hence, $p = 2(|S_3| + |S_4| + 2)$. Therefore, G is a tree in the family given in figure 2(b).

Proposition 3.14. If G is a bipartite graph of diameter 2, then $\gamma_{ch}(G) = 2$. **Proof**: Let xyz be a diameteral path of G. Define 3 sets as follows: $S_1 = N(x) - y$, $S_2 = N(y) - \{x, z\}$, $S_3 = N(z) - y$. Since G is bipartite, all the above 3 sets induce null graphs. If $S_1 = S_2 = S_3 = \phi$, then $G = K_{1,2}$ and hence, $\gamma_{ch}(G) = 2$. If $S_1 = S_3 = \phi$ and $S_2 \neq \phi$, again G is a $K_{1,n}$, $n \ge 3$. Therefore, $\gamma_{ch}(G) = 2$. So suppose S_1 or $S_3 \neq \phi$, say S_1 .

<u>Claim</u>: $S_1 = S_3$.

Let $u \in S_1$ - S_3 . Since diam(G) = 2, d(u, z) = 2. As u is not adjacent to y, there exists a v such that uvz is a path. Then xyzvux is a 5-cycle, a contradiction.

Then {x, y} is a γ_{ch} -set of G.

Proposition 3.15. Let G be a tree of diameter 3. Then $\gamma_{ch}(G) = p - \Delta(G)$ if and only if G = P_4 or G is a tree in the family given in figure 3.

Proof : Clearly, $\gamma_{ch}(G) = 2$. Suppose, $G = P_4$. Then $\gamma_{ch}(G) = 2$, p = 4, $\Delta(G) = 2$ and the proposition holds. Suppose G is a tree given in Figure 4. Then $\gamma_{ch}(G) = 2$, p = deg(z) + 2and $\Delta(G) = \deg(z)$. Then the result holds.

Conversely, suppose $\gamma_{ch}(G) = p - \Delta(G)$. Let e = yz be a dominating edge. Then $deg(y) \ge 2$ and $deg(z) \ge 2$.

<u>Claim</u> : deg(y) \ge 3 and deg(z) \ge 3 cannot hold simultaneously.

<u>**Case i:**</u> deg(y) = deg(z) = 2

Then $G = P_4$ and the conditions are satisfied.

<u>Case ii</u>: deg(y) = 2 and deg(z) \ge 3.

Let deg(z) = n \ge 3. Then $\Delta(G)$ = n and p = n + 2. Therefore, p - $\Delta(G)$ = 2 = $\gamma_{ch}(G)$ and G is a tree given in Figure 3.

Figure 3

Proposition 3.16. Suppose G is a bipartite unicyclic graph and for each $v \in V - V(C)$, d(v, C) = 1, then $\gamma_{ch}(G) \leq p - t$, where C is the unique cycle and t is the number of pendent vertices of G. Further the equality holds if and only if deg(v) > 2 for each $v \in$ V(C).

Proof : From the given condition, it is clear that any vertex not in C is adjacent to exactly one vertex of C and is a pendant vertex. Then V(C) is a dom-chromatic set of G and |V(C)| = p - t. This gives the given upper bound. Suppose deg(v) >2 for each $v \in V(C)$. Then V(C) is a γ_{ch} -set of G, and the bound is attained. Suppose $\gamma_{ch}(G) = p - t$. If there exists a vertex v in C of degree 2, then V(C) - v is a dom-chromatic set of G of cardinality p - t -1, a contradiction. Thus, deg(v) > 2 for each $v \in V(C)$.

Proposition 3.17. If G is a path, then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is P_4 , P_6 , or P_8 . **Proof**: Necessary condition is trivial. Conversely, suppose $\gamma_{ch}(G) = \frac{p}{2}$. <u>Case i:</u> $p \equiv 0 \pmod{3}$ From Proposition 4.1.5 (iv), $\gamma_{ch}(G) = \frac{p+3}{3}$. Then p = 6. <u>Case ii</u>: $p \equiv 1 \pmod{3}$

From Proposition 4.1.5(iv), $\gamma_{ch}(G) = \frac{p+2}{3}$. Then p = 4.

<u>Case iii:</u> $p \equiv 2 \pmod{3}$

From Proposition 4.1.5(iv), $\gamma_{ch}(G) = \frac{p+4}{3}$. Then p = 8.

Proposition 3.18. If G is an even cycle, then $\gamma_{ch}(G) = \frac{p}{2}$ if and only if G is C₄, C₆, or C₈.

Theorem 3.19. If G is any (p, q) graph, $q \ge 1$, then $\gamma_{ch}(G) = p - q + 1$ if and only if G contains exactly $\gamma_{ch}(G)$ -1 components and exactly one of the following holds.

i. each component is isomorphic to $K_{1,s}$'s, $s \ge 0$

ii. exactly one component is a tree with diameter 3 or $K_{1, t}$, $t \ge 1$ and every other component is isomorphic to $K_{1,m}$'s, $m \ge 0$

Proof: Suppose G has $\gamma_{ch}(G) - 1$ components with (i) or (ii) is satisfied. Let $\gamma_{ch}(G) - 1 = k$ and $G = G_1 \cup G_2 \cup .. \cup G_k$. Let each G_i be a (p_i, q_i) -graph. Then in both cases, $\gamma_{ch}(G) = k + 1$ and $q = \sum_{i=1}^k q_i = \sum_{i=1}^k (p_i - 1) = p - k$ and hence, $\gamma_{ch}(G) = p - q + 1$.

Conversely, suppose $\gamma_{ch}(G) = p - q + 1$. Suppose G has k components.

<u>Claim 1:</u> $k = \gamma_{ch}(G) - 1$.

Since $q \ge 1$, $\chi(G) \ge 2$ and a γ_{ch} -set contains at least one vertex from each component,

 $k+1 \le \gamma_{ch}(G) \tag{1}$

Since each component is connected, $q \ge p - k$, and thus, $k \ge p - q = \gamma_{ch}(G) - 1$. Therefore, $k + 1 \ge \gamma_{ch}(G)$. Therefore, from (1), $k + 1 = \gamma_{ch}(G)$.

Let $G_1, G_2, ..., G_k$ be the components of G. Without loss of generality, let $\gamma_{ch}(G_1) = \min_{1 \le i \le k} \{\gamma_{ch}(G_i) | \chi(G_i) = \chi(G)\}$. From Claim 1, $\gamma_{ch}(G) - 1 = k$. Claim 2: $\gamma_{ch}(G_1) = 2$ and $\gamma_{ch}(G_i) = 1$, $i \ge 2$.

Dom-Chromatic Sets in Bipartite Graphs 94

Since G contains an edge, $\gamma_{ch}(G_1) \ge 2$. Suppose $\gamma_{ch}(G_1) \ge 3$. By Claim 1, $\sum_{i=1}^{k} \gamma(G_i) \ge k$ -

$$1 \ge \gamma_{ch}(G) - 2$$
 and therefore, $\gamma_{ch}(G) = \gamma_{ch}(G_1) + \sum_{i=2}^k \gamma(G_i) \ge \gamma_{ch}(G) + 1$, a

contradiction.

Thus,
$$\gamma_{ch}(G_1) = 2$$
. Now $\gamma_{ch}(G) = 2 + \sum_{i=2}^k \gamma(G_i)$. Therefore, $\sum_{i=2}^k \gamma(G_i) = \gamma_{ch}(G) - 2 = k - 1$.

 $\gamma(G_i) = 1$, for each i. Claim3: Each G_i is a tree.

Suppose G_j contains a cycle. Then $q_j \ge p_j$ and $q_i \ge p_i - 1$ for each $i \ne j$. Now, $q = \sum_{i=1}^{k} q_i =$

$$q_{j} + \sum_{\substack{i=1 \\ i \neq j}}^{k} q_{i} \ge p_{j} + \sum_{\substack{i=1 \\ i \neq j}}^{k} (p_{i} - 1) = \sum_{\substack{i=1 \\ i \neq j}}^{k} p_{i} - (k - 1) = p - \gamma_{ch}(G) + 2.$$

Thus, $\gamma_{ch}(G) \ge p - q + 2$, a contradiction.

Each G_i is a tree and $\gamma(G_i) = 1$ imply that $G_i = K_{1,s}$, $s \ge 0$ for each $i \ne 1$. Since $G_1 = K_{1,s}$, $s \ge 0$ 0 and $\gamma_{ch}(G_1) = 2$ imply that either G_1 is a $K_{1,s}$, $s \ge 1$ or a tree with diameter 3.

Theorem 3.20. If T is a tree with diam(T) = 4 and k is the number of non pendant vertices of T, then $\gamma_{ch}(T) = k$.

Proof : Since diam(T) = 4, T has unique center. Let u be the center of T and S = {x | $x \in$ N(u), deg(x) \geq 2 }. If u is adjacent to a pendant vertex, then S \cup {u} is a $\gamma_{ch}\text{-set}$ of T. Hence, $\gamma_{ch}(T)$ is the number of non pendant vertices of T and let it be k. If u is not adjacent to any pendant vertex, then again S \cup {u} is a γ_{ch} -set of T and the result follows.

Proposition 3.21. If G is a tree of diameter 3, then $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$ if and only if $G = P_4$. **Proof**: If G is P₄, then the result is trivial. Conversely suppose $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$. Let the dominating edge of G be e = uv. Let deg(u) = m and deg(v) = n. Also in \overline{G} , (N(u) - v) \cup (N(v) - v) is a K_{m+n-2} and $\chi(\overline{G}) = m + n - 2$. Clearly, the above set is dominating \overline{G} . Hence, $\gamma_{ch}(\overline{G}) = m + n - 2$. Since $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$, m + n = 4 and the result follows.

Proposition 3.22. If G and \overline{G} , both bipartite with diameter 3, then $\gamma_{ch}(G) = \gamma_{ch}(\overline{G})$ if and only if $G = P_4$.

Solution: If $G = P_4$, then from Proposition 3.21, the equality holds. Conversely let the equality hold and uvwx be a diameteral path in G. Then N(v) and N(w) induce null

graphs. Further, as G is bipartite both N(v) and N(w) are of cardinality 2.

Case i: both u and x are pendant vertices.

Then $G = P_4$ and hence, G is P_4 .

<u>ase ii:</u> at least one of u and x is non pendant vertex.

Suppose u is a non pendant vertex and then by similar argument |N(u)| = 2 and N(u) is a null graph. Let $N(u) = \{v, u_1\}$. Clearly, u_1 is not adjacent to x, otherwise a 5-cycle is induced. Then

 $\{u_1, v, x\}$ induces C_3 , a contradiction.

Thus, from case i and ii, a solution is obtained only when G is P₄.

Theorem 3.23. If G is a tree of diameter 3, then $\gamma_{ch}(G) + \gamma_{ch}(\overline{G}) = p$.

Since G is a tree of diameter 3, G has a dominating edge. Therefore, $\gamma_{ch}(G) = 2$. Let uv be the dominating edge of G and V_1 , V_2 be the set of pendant vertices adjacent to u and v respectively. Then in \overline{G} , $\langle V_1 \cup V_2 \rangle$ induces a complete graph K_{p-2} and, u and v are non adjacent. Further u is adjacent to each vertex of V_1 and v is adjacent to each vertex of V_2 in \overline{G} . Thus, $V_1 \cup V_2$ is a γ_{ch} -set of \overline{G} . Therefore, $\gamma_{ch}(\overline{G}) = p - 2$ and (i) follows.

References

- [1] G.A.Dirac. A property of 4-chromatic graphs and some remarks on ciritical graphs. J.London Math. Soc. 27 (1952),85-92. (chap2)
- [2] F.Harary. Graph Theory, Narosa Publishing House, 1988.
- [3] F.Harary and T.W.Haynes. Conditional graph theory IV: Dominating Sets, Utilas Math.
- [4] F.Harary and C.A.Trauth Jr. Connectedness of products of two directed graphs, SIAM J. Appl. Math.14: 250-254, 1966.
- [5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater. Fundamentals of domination in Graphs, Marcel Dekker Inc., New York, 1998.
- [6] T.R.Jensen and B.Toft. Graph coloring problems, John Wiley, 1995.
- [7] D.B.West. Introduction to Graph Theory, Prentice-Hall of India. Pvt . Ltd.