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Abstract:  A subset D of the vertex set V(G) of a graph G is said to be a dominating set if every vertex 
not in D is adjacent to at least one vertex in D. A dominating set D is said to be an eccentric 
dominating set if for every v  VD, there exists at least one eccentric point of v in D. The minimum 
of the cardinalities of the eccentric dominating sets of G is called the eccentric domination number 
ed(G) of G. In this paper, bounds for ed, its exact value for some particular classes of graphs are found. 
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1.Introduction 

 Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set 
E(G). For graph theoretic terminology refer to Harary [4], Buckley and Harary [1].  

Definition 1.1 Let G be a connected graph and u be a vertex of G. The eccentricity e(v) of 

v is the distance to a vertex farthest from v. Thus, e(v) = max {d(u, v) : u  V}. The 
radius r(G) is the minimum eccentricity of the vertices, whereas the diameter diam(G) is 

the maximum eccentricity. For any connected graph G, r(G)  diam(G)  2r(G). v is a 
central vertex if e(v) = r(G). The center C(G) is the set of all central vertices. The central 
subgraph < C(G) > of a graph G is the subgraph induced by the center. v is a peripheral  
vertex if e(v) = d(G). The periphery P(G) is the set of all peripheral vertices. 
  
 For a vertex v, each vertex at a distance e(v) from v is an eccentric vertex. Eccentric 

set of a vertex v is defined as E(v) = {u  V(G) / d(u, v) = e(v)}. 

Definition 1.2 The open neighborhood N(u) of a vertex v is the set of all vertices adjacent 

to v in G. N[v] = N(v)  {v} is called the closed neighborhood of v. For a vertex v  

V(G), Ni(u) = {u  V(G) : d(u, v) = i} is defined to be the ith neighborhood of v in G.  
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Definition 1.3 Let G be a graph with at least one edge. The set of vertices of line graph of 
G denoted L(G) consists of the edges of G with two vertices of L(G) adjacent whenever the 
corresponding edges of G are adjacent. A graph G is a line graph, if it is isomorphic to the 
line graph L(H) of some graph H. 

Definition 1.4 [6] A set S  V is said to be a dominating set in G, if every vertex in VS 
is adjacent to some vertex in S. A dominating set D is an independent dominating set, if 
no two vertices in D are adjacent that is D is an independent set. A dominating set D is a 

connected dominating set, if < D > is a connected subgraph of G. A set D  V(G) is a 

global dominating set, if D is a dominating set in G andG.  

Definition 1.5 A partition of V(G) is called domatic if all of its classes are dominating sets 
in G. The maximum number of classes of an domatic partition of V(G) is called the 
domatic number of G and is denoted by dd(G). 

 The various domination parameters introduced till now find many applications in 
covering of entire graph by the different sets with each of which has  some  specified 
property. These concepts are helpful to find centrally located sets to cover entire graph in 
which they are defined. The concept of eccentric set of a node has application in the 
location of farthest set of a node of a graph and hence in this paper, we define new 
concept named eccentric domination and study the structural properties of graph using 
this concept.  

2.  Eccentric domination 

 In this we initiate the study of new domination, defined as below. 
 

Definition: 2.1 A set D  V(G) is an eccentric dominating set if D is a dominating set of 

G and for every  v  V – D, there exists at least one eccentric point of v in D.  

If D is an eccentric dominating set, then every superset D  D is also an eccentric 

dominating set. But D  D is not necessarily an eccentric dominating set.  
An eccentric dominating set D is a minimal eccentric dominating set if no proper subset 

D  D is an eccentric dominating set. 

Definition: 2.2 The eccentric domination number ed(G) of a graph G equals the 

minimum cardinality of an eccentric dominating set. That is, ed(G) = min D, where the 
minimum is taken over D in D, where  D is  the set of all minimal eccentric dominating 
sets of G. 
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                                       Obviously, (G)  ed(G). 

In the following, we first characterize minimum eccentric dominating set of a graph. 
 
Theorem:2.1 
      An eccentric dominating set D is a minimal eccentric dominating set if and only if for 

each vertex u  D, one of the following is true. 
(i) u is an isolated vertex of D or u has no eccentric vertex in D. 

(ii) There exists some u  V–D such that N(u)  D = {u} 
Proof: 

  Assume that D is a minimal eccentric dominating set of G. Then for every vertex u  
D, D – {u} is not an eccentric dominating set. That is there exists some vertex v in     (V – 

D)  {u} which is not dominated by any vertex in D – {u} or there exists v in       (V – D) 

 {u} such that v has no eccentric point in D – {u}. 
Case (i): 
 Suppose u = v , then u is an isolate of D or u has no eccentric vertex in D. 
Case (ii): 

 Suppose v  V – D  
(a) If v is not dominated by D – {u}, but is dominated by D, then v is 

adjacent to only u in D, that is N(v)  D = {u}. 
(b) Suppose v has no eccentric point in D – {u} but v has an eccentric 

point in D. Then u is the only eccentric point of v in D. that is     

E(v)  D = {u}. 

 Conversely, suppose that D is an eccentric dominating set and for each u  D one of 
the conditions holds, we show that D is a minimal eccentric dominating set. 
 Suppose that D is not a minimal eccentric dominating set, that is, there exists a vertex 

u  D such that D – {u} is an eccentric dominating set. Hence, u is adjacent to at least 
one vertex v in D – {u} and u has an eccentric point in D – {u}. 
 Therefore, condition (i) does not hold. 
 Also, if D – {u} is an eccentric dominating set, every element x in V - D is adjacent to 
at least one vertex in D – {u} and x has an eccentric point in D – {u}. 
 Hence, condition (ii) does not hold. This is a contradiction to our assumption that for 

each u  D, one of the conditions holds. This proves the theorem.          

 Next, we define eccentric point set of the Graph G and eccentric number of G and 
establish the relation between the domination number, eccentric number and eccentric 
domination number of a graph.                      
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Definition: 2.3 Eccentric point set of G:  

 Let S  V(G). Then S is known as an eccentric point set of G if for every v  V–S, S 

has at least one vertex u such that u  E(v). 

 An eccentric point set S of G is a minimal eccentric point set if no proper subset S of 
S is an eccentric point set of G. 
 S is known as a minimum eccentric point set if S is an eccentric point set with 
minimum cardinality. 
 Let e(G) be the cardinality of a minimum eccentric point set of G. e(G) can be called 
as eccentric number of G. 
Let D be a minimum dominating set of a graph G and S be a minimum eccentric point set 

of G. Clearly, D  S is an eccentric dominating set of G. Hence, (G)+e(G)  ed(G)   
(n/2) + e(G). 

Note: This lower bound is sharp since for the tree T = Kn + K1 + K1+ Km, n, m  2, ed(T) 

= (T)+2, where e(T) = 2 for any tree with radius  2. 

The following observations are obvious.  

Observation: 1 For any tree T with  V(T)  3, ed(T)  n– (T)+2. 
 

Observation: 2 If G is disconnected, (G) = ed(G) since vertices from different 
components are eccentric to each other. 
 

Observation: 3  1  ed(G)  n. 

The bounds are sharp, since ed(G) = 1 if and only if  G = Kn and ed(G) = n if and only if 

G = Kn. 
 

Observation: 4  ed(K,n) = 1. 
 The eccentric domination number of some standard classes of graphs are given in the 
following theorem.  

Theorem: 2.2   

(i) ed(K1,n) = 2, n  2. 

             (ii) ed(Km,n) = 2. 

             (iii) ed(W3) = 1, ed(W4) = 2,  ed(Wn) = 3, for n = 5, ed(W6) = 2, ed(Wn) = 3 for     

n  7. 
Proof:  

(i) When G = Kn, radius = diameter = 1. 
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Hence any vertex u  V(G) dominate other vertices and is also an eccentric point of 

other vertices. Hence, ed(Kn) = 1. 
 (ii)  G = K1,n. Let D = {u, v}, v-central vertex. The central vertex dominate all vertices 

in V – D and u is an eccentric point of vertices of V – D. Hence, ed(K1,n) = 2,n  2 

 (iii)   G = Km,n. V(G) = V1  V2 .  V1 = m and  V2 = n such that each element of 
V1 is adjacent to every vertex of V2 and vice versa. 

 Let D = {u, v}, u  V1 and v  V2 . u dominate all the vertices of V2 and it is 
eccentric to elements of V1 – {u}. Similarly, v dominates all the vertices of V1 and it is 
eccentric to elements of V2 – {v}.            Hence, D is a minimum eccentric dominating set 

and hence ed(Km,n) = 2. 

 (iv)     G = W3  = K4. Hence, ed(W3) = 1 
When G = W4, Consider D = {u, v}, where u and v are adjacent non central vertices. D is a 

minimum eccentric dominating set. Therefore, ed(W4) = 2. 
       When G = Wn, let D = {u, v, w} where u and v are any two adjacent non central 
vertices and w is the central vertex.. Then D is a minimum eccentric dominating set of G.  

Therefore, ed(Wn) = 3, n  5. 

 The next theorem gives exact value for eccentric domination number of graph 
obtained from deletion of a perfect matching (linear factor) from a complete graph on 
even number of vertices. 

Theorem: 2.3 
       Let n be an even integer. Let G be obtained from the complete graph Kn by deleting 

edges of a linear factor. Then ed(G) = n/2. 
Proof: 
  Let u and v be a pair of non adjacent vertices in G. Then u and v are eccentric to each 

other. Also, G is unique eccentric point graph. Therefore, ed(G)  n/2. 

 Consider D  V(G) such that D = Kn /2. D contains n/2 vertices such that each 
vertex in V–D is adjacent to at least one element in D and each element in V–D has its 

eccentric point in D. Hence ed(G)  n/2.  From (1) and (2) ed(G) = n/2. 

 Following theorems give upper bound for eccentric domination number of a graph.  
 
Theorem: 2.4  

 If G is of radius one and diameter two, then ed(G)  (n–t+2)/2 where t is the number 
of vertices with eccentricity one. 
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Proof:  Let u  V(G) such that e(u) = 1. Let t be the number of vertices with eccentricity 
one. u dominates all other vertices and for t–1 other vertices u is an eccentric point. 
Consider the remaining (n–t) vertices of G. They are also dominated by u but their 
eccentric points are different from u.  

 Hence, ed(G)  1+(n–t)/2 = (n–t+2)/2. 

Theorem: 2.5  

 If G is of diameter two ed(G)  1+(G). 

Proof:  diam(G) = 2. Let u  V(G) such that degGu = (G). Consider, D = {u}  N(u). 

This is an eccentric dominating set for G. Therefore, ed(G)  (G)+1 and D is a 
connected eccentric dominating set. 

Corollary: 2.5 

 If G is self centered of diameter 2, then ed(G) + ed(G)  n +    + 1. 

Proof: By Theorem 2.5, ed(G)  1 +  and ed(G)  1+(G) = 1 +. Hence ed(G) + 

ed(G)   1 +  + 1 + = 2 +  + (n  1  ) = n +    + 1. 
  If there exists no x in N2(u) such that x is adjacent to all vertices of N(u) and there 
exists no vertex y in N(u) which is adjacent to all vertices of N2(u) then N(u) is eccentric 

dominating set of G and N2(u) is an dominating set ofG. Thus, ed(G) + ed(G)  n + 

    1. 

Theorem: 2.6 

 If G is of radius two and diameter three, then ed(G)  min {(n + degGu1)/2}, 
where the minimum is taken over all central vertices. 
Proof: Let u be a central vertex with minimum degree. Consider N(u). N(u) dominates all 
the vertices of G and all the vertices in N2(u) are eccentric to u. Let S be a subset of N2(u) 

with minimum cardinality such that vertices in N2(u)  S has their eccentric vertices in S. 

Then S  N2(u)/2 = (n  degGu1)/2. Now N(u)  S is an eccentric dominating set of 

G. Hence, ed(G)  degGu +  (n  degGu1)/2 = (n + degGu1)/2. This proves the 
theorem. 

Theorem: 2.7 

 If G is of radius two and diameter three, then ed(G)  min {n  degGu/2}, where the 
minimum is taken over all central vertices.  

Proof: Let u be a central vertex with maximum degree. Then V  N(u) is a dominating set 
of G. Vertices of N(u) are dominated by u, but vertices of N(u) may have  their eccentric 
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vertices in N(u) also. Let S be a subset of N(u) with minimum cardinality such that 

vertices in N(u)  S has their eccentric vertices in S. Then S  degGu /2. Now            

(VN(u))  S is an eccentric dominating set of G. Hence, ed(G)  degGu/2 +               
(n  degGu) = n  degGu/2. Hence, ed(G)  min {n  degGu/2}. 

Corollary: 2.7.1  

 ed(G)  min {n  degGu/2, (n + degGu1)/2 }, where the minimum is taken over all 
central vertices. 

Corollary: 2.7.2 
 If G is of radius two and diameter three and if G has a pendent vertex v of eccentricity 

3 then ed(G)  (G). 
Proof: If G has a pendent vertex v of eccentricity 3 then its support u is of eccentricity 2. 

In this case N(u) is an eccentric dominating set. Thus, ed(G)  degGu  (G). 

Example: Consider the following graph G. 
 

 

 

 
 
 
 

By the theorem, ed(G)  min {n  degGu/2, (n + degGu1)/2 } = min{6,7,8} = 6. 

Theorem :2.8 

 If G is of radius 2 with a unique central vertex u then ed(G)  n  deg(u). 
Proof: If G is of radius 2 with a unique central vertex u then u dominates N[u] and the 

vertices in V  N[u] dominate themselves and each vertex in N(u) has eccentric vertices 

in V  N[u] only. Therefore, V  N(u) is an eccentric dominating set of cardinality         

n  deg(u), so that ed(G)  n  deg(u). 

Corollary: 2.8  

 (i) If G is a unicentral tree of radius 2, then ed(G)  n  deg(u), where u is the 
central vertex. 
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 (ii) If G is a bicentral tree of radius 2, then ed(G)  n  deg(u)+1, where u is a 
central vertex. 

Theorem: 2.9 

 If G is of radius greater than two, then ed(G)  n  (G). 

Proof: Let u be a vertex of maximum degree (G). Then u dominates N[u] and the 

vertices in V  N[u] dominate themselves. Also, since diam(G) > 2, each vertex in N(u) 

has eccentric vertices in V  N[u] only. Therefore, V  N(u) is an eccentric dominating 

set of cardinality n  (G), so that ed(G)  n  (G). 

 In the following three theorems, we analyze the bounds of eccentric domination 
number of a tree in terms of its domination number.  

Theorem: 2.10 

 For a tree T, (T)  ed(T)  (T)+2. 
Proof: 

 Obviously, (T)  ed(T). Let d be the diameter of T. Let u, v  V(T) such that e(u) = 

e(v) = d and d(u, v) = d. Then for any w  V(T) either u or v is an eccentric point. Let D 

be any -dominating set of T. Then D  {u, v} is an eccentric dominating set of T. 

Hence, ed(T)  (T)+2. 

 The next theorem gives an upper bound for eccentric domination number of a tree in 
terms of its maximum degree. 

Theorem:2.11 

 For a tree T, ed(T)  n –(T) +1 . 

Proof: If T has a vertex u of maximum degree which is not a support, then V   N(u) is 
an eccentric dominating set of T. If T has a vertex u of maximum degree which is a 

support of a pendent vertex v, then V   [N(u)  v]  is an eccentric dominating set of T. 
Hence the theorem follows. 

Theorem:2.12 

 For a tree T with radius greater than two, ed(T) < n –(T). 

Proof: As in theorem 2.9, V  N(u) is an eccentric dominating set of cardinality n  

(G). Since the radius of T is atleast three, diameter of T is atleast 5. Consider a diametral 
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path P. This path contains atleast six vertices and includes atmost two edges from  the 
subgraph induced by N[u], that is it contains atmost three vertices from N[u]. 

Case (i): All vertices of P  N[u] (except pendent vertices) are support of some pendent 
vertices 

 In this case, we have to include all the vertices of P in a ed set, but we can leave those 

pendent vertices from V   N(u) to form a ed set. Therefore, ed(T) < n –(T). 

Case (ii): Atleast one vertex of P  N[u] (except pendent vertices) is not a support  

 In this case, we can leave that vertex from V   N(u) to form a ed set. Therefore, 

ed(T) < n –(T). 

 Hence atleast one vertex can be deleted from V   N(u) to form a minimal eccentric 

dominating set. Hence ed(T) < n –(T). 

Theorem: 2.13 

 Let T be a tree with diameter d  2. (T) = ed(T) if and only if T has a  (T) 
dominating set D containing at least two (pendent) peripheral vertices at distance d to 
each other. 
 
Proof: 

 Assume (T) = ed(T). Let D be an eccentric dominating set with cardinality (T) = 

ed(T). Since in a tree, eccentric vertex of any vertex is a peripheral vertex D contains at 
least two peripheral vertices at distance d to each other. 

 On the other hand, assume that D is a (T) dominating set of T containing at least 

two peripheral vertices u, v at distance d to each other. Every vertex x  V(T) has either u 

or v as an eccentric vertex. Hence D is also an eccentric dominating set of T. Hence, (T) 

= ed(T). 

Example:   (i) (P4) = 2 =  ed(P4)  

                   (ii) (K1,n) = 1, ed(K1,n) =  2 =  (K1,n)+1 

                  (iii) If G = Kn + K1 + K1+ Km , n, m  2, ed(G) = 4 = (G) + 2. 

Theorem: 2.14 For a bicentral tree T with radius 2, ed(T)   min {n –(T)+1, 4} 
Proof: Let u and v be the central vertices of T, Then N[u] and N[v] are eccentric 

dominating sets of T. V   [N(u)  v],  V   [N(v)  u]  are also eccentric dominating 

sets of T. Also deg u + deg v = n. Hence, ed(T)  n  (T)+ 1. All the four vertices of a 
diametral path also form an eccentric dominating set. Hence the theorem follows. 
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Corollary:2.14  (i) For a bicentral tree T with radius 2, ed(T) = 2 if and only if T = P4. 

(ii) For a bicentral tree T  P4 with radius 2, ed(T) = 3 = n –(T)+1 if and only if T is a 
wounded spider having atmost one non wounded leg.  

(iii) For a bicentral tree T with radius 2, ed(T) = 4 if and only if degree of the central 

vertices are  3.  

Theorem: 2.14 If T is a wounded spider having atmost one non wounded leg, ed(T) =     

n –(T) +1. 
Proof: Proof is obvious. 

Theorem: 2.15 Let T be a tree with radius 2 and diameter 4. ed(T) = n –(T) if and only 
if any one of the following is true: (i) T = P5. (ii) T is a wounded spider having at least two 
non wounded legs. (iii) T is any one of the following four types of trees.   

 

 

 

 

 

 

 
Proof:  When T is a wounded spider having at least two non wounded legs or any one of 

the trees given above, it is clear that ed(T) = n –(T). 

 On the other hand assume that ed(T) = n –(T). Since T is a tree with radius 2 and 
diameter 4, T has a unique centre v.  

Case (i): Let  deg v = (T). 
 Consider V – N(v). N(v) and V – N(v) are independent sets. N(v) is not an eccentric 
dominating set, since v has no eccentric vertex in N(v). Also each vertex in N(v) has either 
0 or 1 neighbor in V – N(v). Hence T is a wounded spider having at least two non 
wounded legs. 

Case (ii): Let  deg v  (T). 
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 Let u be a vertex of maximum degree. It cannot be a pendent vertex. Therefore 
eccentricity of u is three. V – N(u) is an eccentric dominating  set implies V – N(u) 
contains atleast one peripheral vertex (which is eccentric to u).  
 Now, consider the branches of T taking v as a root. If T contains a third branch with a 
peripheral vertex then V – N(u) is not a minimum eccentric dominating set. Therefore 
third branch must not contain any vertex of eccentricity 4. Suppose T contains more than 
three branches then also V – N(u) is not a minimum eccentric dominating set. Hence 
degree of v must be 2 or 3, with one branch containing u, second branch containing 
vertices of eccentricity 4 and the third one having a vertex of eccentricity 3 as end vertex 
or not. If the second branch contains more than two peripheral vertices then also V – 
N(u) is not an minimum eccentric dominating set. Hence T must be any one of the given 
four types of trees. 

Next we find the exact value of eccentric domination number of a path. 

Remark: 2.1 Let D be an eccentric dominating set of a path. Then any one of the 
following is true. 
 (i) D is a dominating set containing at least two peripheral nodes at distanced d to 
each other. That is D contains end vertices of the path. 
 (ii) D is a dominating set containing one peripheral vertex v and all vertices lying on 
the shortest path from v to a central node. 

Remark: 2.2 
 An eccentric dominating set D of a path contains minimum number of vertices only 
when D contains two peripheral vertices at distance d (= diameter) to each other. That is 
D contains end vertices of the path. 

Theorem: 2.16 ed(Pn) =  n/3, if n = 3k+1, 

ed(Pn) =  n/3 +1, if n = 3k or 3k+2. 
Proof: Case (i) n = 3k 
 An eccentric dominating set of Pn must contain the two end vertices. 

Let v1, v2, v3, v4,…, v3k represent the path Pn. D = {v2, v5, v8,…, v3k-1} is the only -
dominating set of Pn. D is not an eccentric dominating set.  

D = {v1, v4, v7, …, v3k-2, v3k} is an eccentric minimum dominating set andD = 

k+1 = (Pn) + 1. Hence ed(P3k) = (P3k)+1 =  n/3 +1. 
Case (ii) n = 3k+1 
 D = {v1, v4, v7, …, v3k-2, v3k+1} is the minimum dominating set in Pn. It contains the two 
end vertices. Hence it is also an eccentric dominating set. 

                            Hence ed(Pn) =  (Pn) =  n/3. 
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Case (iii) n = 3k+2 
 D = {v2, v5, v8, …, v3k+2} is a minimum dominating set. It contains one end vertex v3k+2 
and it is not an eccentric dominating set. (other minimum dominating sets are also not 

eccentric). Hence D  {v1} is a minimum eccentric dominating set. Therefore, ed(Pn) = 

(Pn)+1 =  n/3 +1. 

Following two theorems give the exact value of the eccentric domination number 
of cycles and their complement graphs. 

Theorem: 2.17 (i) ed(Cn) =  n/2 if n is even. 

                    (ii) ed(Cn) =   n/3 or n/3 +1, if n is odd. 
Proof of (i): 
 If n = 4, any two adjacent vertices of C4 is an eccentric dominating set of C4. 

Hence ed(C4) = 2. 
Let n = 2k and k > 2. 
 Let the cycle Cn be v1 v2 v3…v2kv1. Each vertex of Cn has exactly one eccentric vertex 
(that is Cn is unique eccentric point graph). 

 Hence ed(Cn)  n/2.             ------------------- (1) 
case(i)   k-odd. 
 Consider D = {v1, v3,…, vk, vk+2, …, v2k-1}. This D is an eccentric dominating set for Cn 
since D dominates Cn and vi is an eccentric point of vi+k. 

 Hence ed(Cn)  n/2.          ----------------------------------- (2) 

 From (1) and (2) ed(Cn) = n/2. 
case(ii)   k even. 
 Let D = {v1, v3, …, vk-1, vk+2, …, v2k}. This D is an eccentric dominating set for Cn, 
since D dominates Cn and vi is an eccentric point of vi+k.  

 Hence ed(Cn)  n/2.              -------------------------------- (3) 

 From (1) and (3) ed(Cn) = n/2. 
Proof of (ii): 
 When n is odd, each vertex of Cn has exactly two eccentric vertices. 

 If n = 2k+1, vi  V(G) has vi+k, vi+k+1 as eccentric points. 

case(i)   n = 3m, n odd  m odd 

 n = 3m = 2k+1  2k even and 2k = 3m–1 
                                         2k = 3(m–1)+2 

                                           k = (3(m–1)+2)/2  k = 3l+1 (since m–1 is even) 
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 Consider D = {v1, v4, v7, …, vk, vk+3, …, v2k–1}. D is an eccentric dominating set and D 

is a -dominating set of Cn and D = n/3 = m 

                                           Hence, ed(Cn) =  n/3  = (Cn). 

 case(ii)   n = 3m+1, n odd  m is even. 

 Also 3m = 2k  k is a multiple of 3. 

 Consider D = {v1, v4,…, vk+1, vk+3, vk+6, …, v2k-1}. D is an eccentric dominating set and  

D =  n/3 = (Cn). Hence ed(Cn) =   n/3 = m+1. 

case(ii)    n = 3m+2  3m is odd  m is odd.  
                                             2k = 3m+1 = 3(m–1) + 4 
                                               k = 3l + 2 
 Consider D = {v1, v4, …, vk–1, vk, vk+3, …, v2k+1}. D is an eccentric dominating set with 

n/3 + 1 vertices and no -dominating set of Cn is an eccentric dominating set of Cn. 

                                 Hence ed(Cn) =   n/3 + 1. 

Theorem: 2.18  ed(C4) = 2, ed(C5) = 3 and ed(Cn) = n/3, n  6. 

Proof: Clearly, ed(C4) = 2, ed(C5) = 3, by Observation 2 and by Theorem 2.15. 

Now, assume that n  6. Let v1, v2, v3, …, vn, v1 form Cn. ThenCn = Kn – Cn and each 

vertex vi is adjacent to all other vertices except vi-1, and vi+1 inCn. Hence eccentric point 

of vi inCn is vi-1, and vi+1 only. Hence any eccentric dominating set must contain either vi 

or any one of    vi-1, vi+1. So, ed(Cn)  n/3, Now, we can consider an eccentric 
(minimal) dominating set as follows.  

{v1, v4, v7, …, v3m-2} if n = 3m; 
{v1, v4, v7, …, v3m+1} if n = 3m+1; 
{v1, v4, v7, …, v3m+1, v3m+2} if n = 3m+2; 

 Hence ed(Cn)  n/3. Thus, it follows that ed(Cn) = n/3, for n  6. 

 Parthasarathy and Nandakumar introduced the concept of eccentricity preserving 
spanning trees of a given graph and its structural properties studied by them and also by 
Janakiraman [5]. Next theorem gives bound for the introduced parameter for the graphs 
having eccentricity preserving spanning trees. 

Theorem: 2.19 If G has an eccentricity preserving spanning tree then ed(G)  (G) + 2. 
Proof:  If G has an eccentricity preserving spanning tree, then the minimum number of 
vertices which are eccentric points of other vertices are 2. 

                                       Hence, ed(G)  (G) + 2. 



 
 

 

68 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

 Next we give two results relating global domination number and eccentric domination 
number of a graph. 

Observation: 2.4 If (G)  3, ed dominating set D of G is also a dominating set of G. 

Hence g(G)  ed(G). 

Theorem: 2.20 If G is self-centered of diameter two, then g(G)  ed(G).  

Proof: Let D be an eccentric dominating set of G. If v  V–D, there exist u, w  D such 

that uv  E(G) and w is eccentric to v. InG, v and w are adjacent. So again, D is a global 

dominating set. Hence g  ed. 

Remark: 2.3 Minimum eccentric dominating set need not be a minimum global 
dominating set. 

 In K2+K1+K1+K2,  ed =  4 and g = 3.. 

 Following result gives the exact bound for a product graph of a graph. 

Theorem: 2.21 Let G be a connected graph with  V(G) = n. Then ed(GK1) = n. 

Proof:  Let V(G) = {v1, v2, …, vn}. Let vi be the pendent vertex adjacent to vi in GK1 for i 
= 1, 2, …, n. 

 Then {v1, v2, …, vn} is an eccentric dominating set for GK1, and is also a minimum 

dominating set for GK1.  Hence ed(GK1) = n. 

 Next, we characterize some special classes of graph for which eccentric domination 
number is 1 or 2. 

Theorem: 2.22 ed(G) = 1 if and only if G = Kn. 

Proof: If G  Kn, then G has atleast one pair of non-adjacent vertices with eccentricity 
greater than one. 

Theorem: 2.23 Let G be a connected graph. Then ed(G) = 2 if and only if G is any one of 
the following. 

 (i)  r(G) = 1, d(G) = 2 and u  V(G) such that e(u) = 2 and d(u, v) = 2 for all v  
V(G) with e(v) = 2. 
 (ii) G is self-centered of diameter 2, having a dominating edge which is not in a 
triangle. 

 (iii) r(G) = 2, d(G) = 3 and G has a -set D of cardinality two which is not connected. 
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Proof: When G satisfies any one of the above conditions obviously ed(G) = 2. 

On the other hand, assume that ed(G) = 2. Therefore, (G) = 1 or (G) = 2. 

Case(i)     (G) = 1 and ed(G) = 2. This implies G satisfies (i). 

Case(ii)    (G)  = 2 =  ed(G) 

 Let D be a minimum ed-dominating set of G. Let D = {u, v}  V(G). 

Since (G) = 2, r(G)  2. 
(a) <D> is connected:  
            Since D is connected u and v are adjacent and the edge uv is a dominating edge 

for G. Therefore r(G)  2 and 2  d(G)  3. Suppose d(G) = 3, there exists a vertex x 
with eccentricity 3 and x is dominated by u or v. 

 Let xu  E(G). Now, D is an ed-set. Hence v must be an eccentric point of x. This 

implies that d(x, v) = 3, But x u v is a path  d(x, v) = 2, which is a contradiction. Hence, 
x must be a vertex with eccentricity 2. This implies that d(G) = 2, that is G is self-centered 
with diameter 2. [There exists no w, adjacent to both u and v, since in that case, w has no 

eccentric point in D, since r(G)  2] 
(b) <D>is not connected: 

 G is a connected graph, (G)  = 2 =  ed(G) implies that d(G)  3. Therefore d(u, v) = 
2 or 3. 

 If d(u, v) = 2, there exists w  V(G) such that w is adjacent to both u and v. 
Therefore, w must be of eccentricity one, since D = {u, v} is an eccentric dominating set. 

Thus G is a graph with r(G) = 1 and d(G) = 2 which is a contradiction to (G) = 2. Hence 

d(u, v)  2. This implies that d(u, v) = 3. Then e(u) = e(v) = 3 and uwxv is a shortest path, 
since D is an eccentric dominating set, eccentric point of w must be v and eccentric point 
of x must be u. Therefore, e(w) = e(x) = 2. Thus G is a connected graph with radius 2 and 

diameter 3 with a -set D of cardinality two which is not connected.  This proves the 
theorem. 

Corollary 2.23: (P4) = 2 and (K1,n) = 2. 

Theorem: 2.24 ed(G) = 2 and D is an eccentric dominating set  K2 if and only if every 
vertex in V–D is adjacent to exactly one of u and v and G is self-centered with diameter 2. 
Proof:  Follows from case (ii)(a) of previous theorem. 
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Theorem: 2.25 If G is a graph with diameter three and (G) = 2 then ed(G) = 2 if and 
only if G has a pair {u, v} such that one is the unique eccentric point of other and d(u, v) = 
3 
Proof:  Follows from case (ii)(b) of previous theorem. 
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