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Abstract: Let G be a simple graph with vertex set V(G) and edge set E(G). A Set S  V is said to be a 
chromatic preserving set or a cp-set if χ(<S>) = χ(G) and the minimum cardinality of a cp-set in G is 
called the chromatic preserving number or cp-number of G and is denoted by cpn(G). A cp-set of 
cardinality cpn(G) is called a cpn-set. A partition of V(G) is said to be a cp-partition, if each  subset in 
the partition induces a chromatic preserving set (cp-set). The cp-partition number of a graph G is 
defined to be the maximum cardinality of a cp-partition of V(G) and is denoted by cppn(G). In this 
paper, cp-number and cp-partition number of some standard graphs are found. Some of the graphs for 
which cpn(G) = χ(G) are identified. Some Nordhaus-Gaddum type of  results are obtained for cp- 
number and cp-partition number. 
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1. Introduction 
  
 Graphs considered in this paper are finite, simple and undirected. For any graph G, 
the vertex set and edge set are denoted by V(G) and E(G) respectively. 
 
 A clique of a graph G is a maximal complete sub graph. The cardinality of a 

maximum clique is called the clique number and is denoted by ω(G). A wheel Wn is 
obtained by joining each vertex of Cn-1 to an isolated vertex. If S is a non empty subset of 
the vertex set of a graph G, then the sub graph  of G induced by S is the graph with vertex 
set S and edge set consisting of all those edges of G with both the end vertices in S and is 
denoted by <S>. A block of a graph G is a maximal, 2-connected sub graph of G.  A graph 
G is a block graph if and only every block of G is a complete graph. A graph G is said to 

be a perfect graph if χ(H) = ω(H) for all induced sub graphs H of G . A graph G is 
chordal or triangulated if every cycle of length greater than three has a chord. A set of 
vertices in a graph G is independent if no two of them are adjacent in G. The maximum 
cardinality among such independent sets is called the independence number of G and is 

and denoted by βo(G) . An independent set of edges of G has no two of its edges adjacent 

and the maximum cardinality of such a set is the edge independence number β1(G).         
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A matching in a graph is a set of independent edges and a perfect matching is a set of 
independent edges such that each vertex is an end vertex of some edge.    
 

 A set S  V is a dominating set of G if for each u V - S, there exists a vertex v  S 
such that u is adjacent to v. The minimum cardinality of a dominating set in G is called 

the domination number and is denoted by γ(G). A dominating set S  V of G is a total 
dominating set if <S> has no isolated vertices. The minimum cardinality of a total 

dominating set in G is called the total domination number and is denoted by γt(G). A 

dominating set S  V of G is a connected dominating set if <S> is a connected subgraph 
of G. The minimum cardinality of a connected dominating set in G is called the connected 

domination number and is denoted by γc(G).  
 

 A k-coloring of a graph G is a labeling f : V → {1,2,…,k}. The labels are colors; the 

vertices with color i form a color class. A k-coloring is proper if xy  E implies f(x) ≠ f(y). 

A graph G is k-colorable if it has a proper k-coloring. The chromatic number χ(G) is the 

minimum k such that G is k-colorable. If χ(G) = k, then G is said to be k-chromatic. If 

χ(G) = k, but χ(G) < k for every proper sub graph H of G, then G is said to be a k-color-
critical graph. A graph G is said to be a vertex-color-critical graph or k-critical graph if 

χ(G - u) < χ(G) for every u  V. Critical graphs were defined by  Dirac [1]. In the 
literature, there are many questions posed by mathematicians on critical graphs. The book 
by Jensen and Toft [4] lists all famous problems on critical graphs. The k-critical graphs 
for k = 1, 2 and 3 are K1, K2 and odd cycles, respectively. For k ≥ 4, the k-critical graphs 
have not been characterized. Ordinarily, it is extremely difficult to determine whether a 
given graph is critical; however every k-chromatic graph k ≥ 2 contains a k-critical sub 
graph. In fact, if H is any smallest (in terms of number of vertices) induced sub graph of G 

such that χ(G) = χ(H), then H is critical. Also not much is known on how to find the 
smallest critical sub graph of a non critical graph. Hermann [3] made an attempt to 
propose new exact algorithms for finding the chromatic number of a graph G. The 
algorithm attempts to determine the smallest possible induced sub graph H of G, which 
has same chromatic number as G. As mathematicians are more interested in rigorous 
proof techniques, in this paper we made an attempt to find the smallest subset of a vertex 
set, which induces a critical graph having the same chromatic number of the given graph. 
We define a  vertex subset satisfying the above condition as a chromatic preserving set (or 
cp-set) and the minimum chromatic preserving set as cpn-set. In a real life situation, 
finding a cpn-set gives a feasible solution to number of problems. For an example, in an 
Organization/Institution, the management is interested in forming a team from 
employees/students to train them in different specified skills so that (i) the members are 
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reachable from each other (by reachable we mean that no sub team is isolated from the 
main team) (ii) there is at least one member for each specified skill (iii) one member is 
selected only for one skill (iv) two members with direct association are not selected for the 
same training (v) the minimum number of different skills that can be given to the group 
and (vi) the size of the team is as small as possible. Now, if a graph is drawn with the 
vertices representing the employees or students and an edge is drawn if an association 
exists between any two members. If different skills are marked by different colors, then the 
proper coloring of the graph satisfies (iii) and (iv). Finding the chromatic number of the 
graph satisfies condition (v). Finally, a minimal cp-set satisfies conditions (i) and (ii), and 
a cpn-set satisfies condition (vi).  
 
 Unless otherwise mentioned any graph considered in this paper is a (p, q)-graph. 
Definitions not given may be referred to [2] and [5]. 
 

2. Prior Results 
 

Theorem 2.1 ([5], pp 177). If G is a k-color-critical graph, then δ(G) ≥ k - 1. 
 

Theorem 2.2 ([2], pp 129). For any graph G, χ(G) + χ( G ) ≤ p + 1. 
 

Proposition 2.3 Graphs G and G  are bipartite if and only if G = C4, P3, P4, or 2K2. 

Proof: If  G has a vertex u such that d(u) > 2, then in G , the neighbors of u form a 3-

cycle. If  diam(G) > 3, then in G , a 3-cycle is induced. In both cases contradiction arises.  
 

3. Main Results 
 
3.1. Chromatic preserving sets in graphs 
 

Definition 3.1.1.  A set S  V is said to be a chromatic preserving set or a cp-set if 

χ(<S>) = χ(G) and the minimum cardinality of a cp-set in G is called the chromatic 
preserving number or cp-number of G and is denoted by cpn(G). A cp-set of cardinality 
cpn(G) called cpn-set. 
 
Example 3.1.2. The graph G given in Figure 1(Appendix II) is 3-chromatic graph with 10 
vertices and 15 edges and it does not have a 3-cycle. From that Figure, it is clear that the 
minimum odd cycle is of length 5 and hence, cpn(G) = 5. 
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 Observation 3.1.3.  Properties of a minimal cp-set: 

i. If χ(G) ≥ 3, then  cpn-set induces a 2-connected vertex-color-critical graph. 
ii. If G is connected, then cpn(G) = p if and only if G is vertex-color-critical. 
iii. There does not exist any disconnected graph G such that cpn(G) = p. 
iv. cpn(G) = 1 if and only if G = nK1, n ≥ 1. 
v. G is a bipartite graph if and only if cpn(G) = 2. 
vi. If G is 3-chromatic, then cpn(G) = go(G).  
vii. If cpn(G) = 3, then G is 3-chromatic. 
viii. For any non-trivial graph G, which is neither vertex-color-critical nor totally 

disconnected,         2 ≤ cpn(G) ≤  p - 1. 
ix. For a disconnected graph G with k < p components, cpn(G) ≤ p - k  + 1. 

x. If χ(G - u) < χ(G) for a vertex u  V, then u is in every minimal cp-set of G and 

conversely. Similarly, if χ(G – e) < χ(G) for an edge e  E, then e is in every minimal 
cp-set of G and conversely. 

xi. If χ(G - u) = χ(G), then cpn(G - u) ≥  cpn(G). 
xii. If cpn(G) ≤ 4, then G is a perfect graph. 
 
The following Proposition gives the cp-number of some standard graphs.     
Proposition 3.1.4. 
i.     cpn(Kn)  =  n; 
ii.    cpn(Cn)  =  





odd; isn  if     n,

even isn  if     2,     

iii.    cpn(Wn)= 




odd; isn  if     n,

even isn  if     3,   

 
Proposition 3.1.5. For any graph G,  

i. ω(G) ≤ χ(G) ≤ cpn(G). 

ii. χ(G) = cpn(G) if and only if cpn-set induces a complete graph.         
Proof: 
i)  Follows trivially. 
ii) Suppose a cpn-set induces a complete graph and S is a cpn-set of G. Then <S> = Kr  for 

some r and hence, cpn(G) = r. Further χ(G) = χ(<S>) = r and the result follows. 

Conversely, suppose cpn(G) = χ(G) and S is a cpn-set of G. Therefore, |S| = cpn(G) = 

χ(<G>) = χ(<S>). Hence, S induces a complete graph.  
 

Proposition 3.1.6.  If G is a perfect graph, then cpn(G) = χ(G) = ω(G). 
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Proof:  If G is perfect, then ω(G) = χ(G). Then a cpn-set induces a complete graph and 
the result follows from Proposition 3.1.5(ii). 
Proposition 3.1.7. If G is a disconnected graph with components G1, G2, ….,Gk, then cpn(G) 

= 
i

min {cpn(Gi) | χ(Gi) = χ(G)}.             

                                      

Proposition 3.1.8. If S is a cpn-set of a graph G and χ(G) = k ≥ 3, then δ(<S>) ≥ k - 1. 
Proof: Since <S> is vertex-color-critical, from Theorem 2.1, the result follows.    
 

Proposition 3.1.9. If a connected graph G has a dominating cpn-set and γ(G) ≥ 2, then             

γ(G) ≤  γt (G)  ≤ γc(G) ≤ cpn(G).      
     
Proposition 3.1.10. A graph G is 3-chromatic with go(G) = 5 or a 5-chromatic graph 
containing K5 as a maximal complete graph G if and only if  cpn(G) = 5. 
Proof: Necessary part is trivial. Now suppose cpn(G) = 5 and G is a  k-chromatic graph. 
Clearly, 3 ≤ k ≤ 5. 
Claim : k ≠ 4. 
Suppose k = 4. Let S = {a, b, c, d, e} be a cpn-set of G. Since <S> is 4 -chromatic, exactly 
two of the vertices are of same color and the remaining three vertices are of different 
colors. Then one of the vertices of same color must be adjacent to all the remaining 3 
colors. This adjacency induces a K4, which consequently implies cpn(G) = 4, a 
contradiction. 
Case i:  k = 3. 
From Observation 3.1.3(vi), cpn(G) = go(G) and the result follows. 
Case ii:  k = 5. 

Then cpn(G) = (G) and  by Proposition 3.1.5(ii), cpn-set induces a complete graph and 
hence, G  contains K5 as a maximal complete sub graph.             
 
Proposition 3.1.11. For a graph G,  

i. cpn(G) = cpn ( G ) = 1 if and only if  G = K1. 

ii. cpn(G) = cpn ( G ) = 2 if and only if  G = P3,  K2  K1,  P4, C4, 2K2.      
 

Proposition 3.1.12. If cpn(G) = cpn(G ) = 3, then χ(G) = 3 and p ≥ 5. 

Proof: If cpn(G) = 3, then χ(G) = 3 and G has a 3-cycle say u-v-w-u. By similar argument, 

G  has a 3-cycle say x-y-z-x.  Then x, y, z are independent vertices in G. Hence, at least 2 
vertices of x, y, z cannot be in the 3-cycle u-v-w-u. Thus p ≥ 5.     
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Theorem 3.1.13. For a connected graph G, cpn(G) = cpn( G ) = 3 if and only if G and 

G are 3-chromatic and contain at least one of  the sub graphs in the family of graphs 

given in Figure 2 (Appendix II) as induced sub graph. 

Proof:  Necessary part is trivial. Now suppose cpn(G) = cpn(G ) = 3.  Then G and G are 

3-chromatic and hence, both G and G contain 3-cycles. Let a-b-c-a and d-e-f-d be 3-

cycles in G and G respectively. Clearly, {d, e, f} forms an independent set in G and {a, b, 

c} forms an independent set inG . Two cases arise. Here, the case is being discussed for 

the graph G. Similar discussion can be had for G also. Let ß be the family of graphs given 

in Figure 2 (Appendix II). 

Case i:  {a, b, c} ∩ {d, e, f} ≠ . 

Clearly, |{a, b, c} ∩ {d, e, f}| = 1. Without loss of generality, let a = f.  Then {a, d, e} forms 
an independent set in G. Let S = {a, b, c, d, e}. Then deg<S>(a) = 2, 2 ≤ deg<S>(b) ≤ 4 and 2 
≤ deg <S>(c) ≤ 4. Table 1 (a) (Appendix I) lists the graphs <S> for the various values of 
deg(b) and deg(c) with deg(a) = 2 in <S>.  

Case ii: {a, b, c} ∩ {d, e, f} = . 
Let H = <{a, b, c, d, e, f}>.  In H, the following facts are observed. 
Fact 1: At most two vertices of {a, b, c} can be adjacent to the same vertex of {d, e, f}. 
Otherwise K4 is induced. 
Fact 2: Each vertex of {a, b, c} is adjacent to a vertex of {d, e, f}. 

Otherwise βo(H) = 4. Then K4 is induced in G , a contradiction to G is a 3-chromatic 

graph. 
Fact 3: A vertex of {d, e, f} can be adjacent to at most two vertices of {a, b, c}. 
Otherwise K4 is induced. 
Sub case i: H is disconnected. 
Claim: H has only one isolated vertex. 

Suppose H = K3  3K1. Then similar argument as in Fact 2 leads to a contradiction. So 
suppose H has 2 isolated vertices say d and e. From Fact 2 each vertex of {a, b, c} is 
adjacent to vertex f and inducing K4, a contradiction. Hence, the claim holds. 
Let d be the isolated vertex of H. then from Fact 2, 3 ≤ deg(a), deg(b), deg(c) ≤ 4 and from 
Fact 3,  1 ≤ deg(e), deg(f) ≤ 2. Then the following fact is observed. 
Fact 4: At most one vertex of {a, b, c} can be of degree 4.  
Suppose deg(a) = deg(b) = 4. Then as deg(c) ≥ 3, a, b, c are adjacent to the same vertex of 
{d, e, f}, contradicting Fact 1.  
 If deg(a) = deg(b) = deg(c) = 3, then graph(h) is induced. Suppose deg(a) = deg(b) = 3, 
deg(c) = 4. From Fact 1, graph (i) is induced.   
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Sub case ii: H is connected. 
From Fact 3, 1 ≤deg(d), deg(e), deg(f) ≤ 2 and from Fact 2, 3 ≤deg(a), deg(b), deg(c)≤ 5.   
Then the following facts are observed.  
Fact 5: At most one vertex of {a, b, c}can be of degree 5. 
Suppose deg(a) = deg(b) = 5. Then from Fact 1, deg(c) = 2 contradicting deg(c) ≥ 3.   
Fact 6: Two vertices of {a, b, c} are of degree 4 and one vertex of {a, b, c} is of degree 5 
cannot hold. Suppose fact 6 does not hold. Then sum of the degrees of vertices d, e and f 
is 7, a contradiction to the fact that sum of the degrees is at most 6 as  1 ≤ deg(d), deg(e), 
deg(f) ≤ 2. 
Table 1 (b) (Appendix I) lists the graph H for the various values of deg(a), deg(b) and 
deg(c). 
 

Proposition 3.1.14.  If for a graph G, cpn(G) = cpn( G ) = 3, then βo(G) = βo(G ) = 3. 

Proof: cpn( G ) = 3 implies that βo(G)  3.  If βo(G)  4, then  G contains K4 as an 

induced sub graph,  a contradiction.  Hence, βo(G) = 3.  Similarly, βo(G ) = 3.                                              
 
Definition 3.1.15.  A graph G is called a well colored graph if all minimal cp-sets have the 
same cardinality. 
 
Observation 3.1.16. 
i. Totally disconnected graph is a well colored graph. 
ii. Bipartite graph is a well colored graph. 
iii. Triangulated graph is a well colored graph. 
iv. Block graph is a well colored graph. 
 

Proposition 3.1.17. If G is a block graph with a single cut vertex, then G  is a well colored 
graph. 

Proof:  Let u be the cut vertex of G and G - u = G1  G2  …  Gk . Let |V(Gi)| = ni,  1 

≤ i ≤ k.  Then G   = 
knnnK ....,, 21

 and the result follows.         

 
3.2. Cp-partition of graphs 
 
Two new parameters cp-partition and cp-partition number are defined in this section.  
 
Definition 3.2.1.  A partition of V(G) is said to be a cp-partition, if each  subset in the 
partition induces a chromatic preserving set (cp-set). The cp-partition number, cppn(G) is 
defined to be the maximum cardinality of a cp-partition of V(G). 
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Proposition 3.2.2. 
i.  cppn(Kn)   = 1; 
ii. cppn(nK1) = n; 
iii.cppn(K1,n) = 1; 
iv.cppn(Km,n) = min{m, n},  m, n  ≥ 2; 

v. cppn(Cn)   = 




odd; isn  if        1,

even isn  if     n/2,    

vi. cppn(Wn)  =   1.       
 
Observation 3.2.3. 
i.  If G is a vertex-color-critical graph, then cppn(G) = 1. The converse need not be true. 
ii. For each pair of positive integers n and r, there exists a graph G with cpn(G)  = n and   
    cppn(G) = r. 
Proof: 
i)  Consider the graph G = Kn - e for any n. Then cpn(G) = n - 1, and hence, cppn(G) = 1.  
Clearly, G is not vertex-color-critical. 
ii)  A complete n-partite graph Kr,r,….,r satisfies the required properties. 
 
Proposition 3.2.4. 

i. If G is a bipartite graph, then cppn(G) = β1(G). 

ii. If G is a connected graph with χ(G) = k,  then cppn(G) ≤ 
k

 p .  

iii. If G is not totally disconnected, then cppn(G) ≤ 
2

 p . 

iv. cppn(G) = p if and only if G = pK1. 

v. If G is bipartite, then cppn(G) ≤ 
2

 p  and the equality holds if and only if G has a    

perfect matching. 
Proof: Trivial. 
 
Proposition 3.2.5.  For a connected graph G,  
i. cpn(G) = cppn(G) = 1 if and only if G = K1. 

ii.cpn(G) = cppn(G) = 2 if and if and only if G = P5,  P4, C4  or G ß, where ß is the family 
of graphs given in Figure 3 (Appendix II).  
      
3.3. Some Nordhaus-Gaddum type of results 
 

Proposition 3.3.1.  For a perfect graph G, cpn(G) + cpn(G ) ≤  p + 1. 
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Proof: G is perfect if and only if G is perfect. From Proposition 3.1.6, cpn(G) = χ(G) and 

cpn(G ) = χ(G ). Hence, cpn(G) + cpn(G ) = χ(G) + χ( G ) ≤ p + 1. 
 

Proposition 3.3.2. If G is vertex-color-critical, then cpn(G) + cpn(G ) = p + 1 if and only 
if G is complete. 

Proof: If G is complete, G = Kp and hence, G = pK1. Hence,  χ(G)= cpn(G)=p;  

χ(G )=cpn( G )=1 and the result follows. Suppose cpn(G) + cpn(G ) = p +1. Since G is 

vertex-color-critical, cpn(G) = p. Hence, cpn(G ) = 1. Thus, G = pK1.Therefore, G = Kp. 
 

Proposition 3.3.3. If G is a perfect, then cpn(G) + cpn(G ) ≤ p + 1. 

Proof: If G is perfect, then G  is perfect. From Proposition 3.1.6., cpn(G) = χ(G) and 

cpn(G ) = χ(G ). Then the result follows from Theorem 2.2.    
 

Proposition 3.3.4.  If G is bipartite and G is disconnected, then cpn(G) + cpn( G ) = p + 

1 if and only if G = K1,p-1, p ≥ 3. 

Proof: Necessary condition is trivial. Suppose cpn(G) + cpn(G ) = p + 1.  Since cpn(G) = 

2, cpn(G ) = p - 1. As G is disconnected, one component H of G has at least p - 1 

vertices and χ( H ) = χ( G ). Since G has p vertices, and at least two components, H has 

exactly p - 1 vertices. Thus, G = H  K1.  Consequently G = H + K1.  Since G is 

bipartite and K1 is joined to all vertices of H, H must be a null graph. Hence, G = K1, p-1. 
 

Proposition 3.3.5. If G and G are 3-chromatic, then cpn(G) + cpn(G ) = 2p if and only if 
G = C5. 

Proof: Necessary part is trivial. Suppose cpn(G) + cpn(G ) = 2p. Then cpn(G) = cpn( G ) = 

p. Therefore, G and G  are vertex-critical graphs and hence, they are odd cycles. Clearly G, 

G  ≠ C3. Suppose G ≠ C5. Then G = C2r+1, r ≥ 3. This implies βo(G) ≥ 3 and hence, go(G ) 
= 3, a contradiction. 
 

Proposition 3.3.6. If G is a vertex-color-critical graph, then cpn(G) + cpn( G ) = p + 1  if 
and only if G is complete. 

Proof: If G is complete, then G  is totally disconnected graph and thus, the result follows. 
Suppose   
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cpn(G) + cpn( G ) = p + 1. Since G is vertex-color-critical, cpn(G) = p and therefore, 

cpn(G ) = 1. Thus, G  is a 1-chromatic graph. Hence, G  is either a trivial graph or a 
totally disconnected graph and hence, G is complete.   
 

Observation 3.3.7. There exist k-chromatic graphs G and G such that cpn(G) + cpn( G ) = 
2k.  
 
Example 3.3.8. Let G be a graph obtained from Kk by adding pendant edges added at each 

vertex of Kk. Then both the graphs G and G  are p-chromatic and contain Kk as an 

induced sub graph. Therefore, cpn(G) = cpn(G ) = p. 
 

Proposition 3.3.9. If G and G  are bipartite, then cppn(G) + cppn( G ) = p if and only if G 
= C4, P4, or 2K2. 

Proof: Necessary condition is trivial. Suppose cppn(G) + cppn(G ) = p. From Proposition 

2.3, G and G  are bipartite if and only if G = C4, P3, P4, or 2K2. If G = C4, P3, 2K2 or P4, 

then G = 2K2, K2 K1, C4, and P4 respectively. If G = P3, then cppn(G) =  cppn(G ) = 1, a 

contradiction. If G = C4, P4, or 2K2, then cppn(G) =  cppn(G ) = 2, and the result follows. 
 

Proposition 3.3.10. If G is a vertex-color-critical graph, then cppn(G) + cppn(G ) = p + 1  
if and only if G is complete. 

Proof: Let G be a complete graph. Then cpn(G) = p and cpn(G ) = 1.Therefore, cppn(G) 

= 1, cppn( G ) = p and hence, cppn(G) + cppn( G )  = p + 1. Conversely suppose cppn(G) 

+ cppn( G )= p+1. Since G is vertex-color-critical graph, cpn(G) =  p and hence, cppn(G) = 

1 This implies cppn(G ) = p. Therefore, G  is a totally disconnected graph and hence, G is 
complete. 
 
Proposition 3.3.11. If G is neither complete nor totally disconnected, then cppn(G) + 

cppn(G ) ≤ p. 

Proof: Since G is not totally disconnected, cppn(G) ≤ 
2

 p .  As G is not complete,G  is not 

totally disconnected and hence, cppn(G ) ≤ 
2

 p . Hence, cppn(G) + cppn(G ) ≤ p. 
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4. Problems 
1. Is it possible to characterize all k-chromatic graphs G and G of order p such that 

cpn(G) + cpn(G ) = 2p.  
2. For a k-chromatic graph G satisfying the condition in problem 1, what is the maximum 
number of edges that can be added to G so that the property is maintained. 
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Appendix I 

Table 1(a) 
 

deg<S>(b) deg<S>(c) <S> 
2 2 (a) 
2 3 (b) 
2 4 (c) 
3 3 (d), (e) 
3 4 (f) 
4 4 (g) 

 
                                                                                         

Table 1(b) 
 

degH(a) degH(b) degH(c) H 
3 3 3 (j) 
3 3 4 (k), (l) 
3 3 5 (m) 
3 4 4 (n), (o) 
3 4 5 (p) 
4 4 4 (q) 
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Appendix II 
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Figure 2 
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          (d)                                              (e)                                                     (f) 

          
   (g)                                             (h)                                             (i) 
 

Figure 3 


