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Abstract:  Let G be a connected graph. Let , i, t, e and p denote respectively the domination 
number, the independent domination number, the total domination number, the connected 
domination number and the perfect domination number of G. The n-cube Qn is the graph, whose 
vertex set is the set of all n-dimensional Boolean vectors with two vertices being joined if and only if 
they differ in exactly one coordinate. Hamming proved that Qn has a perfect dominating set if and only 
if n = 2k1. Here, it is proved that (Qn) = 2n–k for n = 2k

. Bounds for i(Qn), c(Qn), t(Qn) and p(Qn) 
are also found out. Finally, it is conjectured that   (Qn) = (Qn–1) + (2n–1(Qn–1))/ (n1)  for 2k+1 
 n  2k+1–2, where x denote the least integer not less than x. 
 
 

1.  Introduction 
Let G be a finite, connected, undirected, simple graph with vertex set V(G) and edge set 
E(G). A vertex u is said to dominate the vertex v if E(G) contains an edge from u to v or if 

u = v.  A set D  V(G) is a dominating set, if every vertex in  V(G) is either an element of 
D or is adjacent to an  element of D; that is every vertex of G is dominated by at least one  
member of D. A dominating set D is an independent dominating set, if no two vertices in 
<D> are adjacent, that is, D is an independent set. A dominating set D is a connected 
dominating set, if < D > is a connected subgraph of G.  A dominating set D is a perfect 
dominating set, if each vertex of G is dominated by exactly one element of D. Clearly every 
perfect dominating set is independent dominating set. A dominating set D is a total 

dominating set, if < D > has no isolated vertex. The domination number  of G is defined 
to be the minimum cardinality of a dominating set in G. Similarly, we can define the 

perfect domination number p, connected domination number c, total domination 

number t, independent domination number i. for a graph G.  It is clear that a perfect 
dominating set for a graph is necessarily a minimum dominating set. A dominating set 

with cardinality (G) is known as a -dominating set. The domatic number d(G) of a 
graph G is the maximum number of elements in a partition of V(G) into dominating sets. 
The distance d(u, v) between two vertices u and v in G is the minimum length of a path 
joining them. Let D1 and D2 be two subsets of V(G). Distance between the two sets D1, D2 
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is defined as the minimum of {d(u, v) : u  D1, v  D2 }. The definitions and details not 
furnished here may be found in [2] and [5].  The hypercube or n-cube Qn is the graph 
whose vertex set is the set of all n-dimensional Boolean vectors in which two vertices are 
joined if and only if they differ in exactly one coordinate. We observe that Q1= K2 and Qn 

= Qn1  K2 if n  2. 
 
 A communication network can be represented by a connected graph G, where the 
vertices of G represent processors and edges represent bi-directional communication 
channels. The hypercube Qn of dimension n is one of the most versatile and powerful 
interconnection networks. It has been successfully employed in the architecture of 
massively parallel computers. A dominating set in Qn can be interpreted as a set of 
processors from which information can be passed on to all the other processors. Hence, 
the determination of the domination parameters of Qn is a significant problem.  
 
 The notion of perfect dominating set in a hypercube is same as that of a single-
error correcting binary code, which is due to R.W.Hamming[4].  Jha  [6] has proved the 
following theorem: 
 

Theorem 1.1[6] Let (Qn) denote the domination number of Qn. Then  

[2n/(n+1)]  (Qn)  [2n/2h], where h = log2(n+1). If n = 2k–1, then the two bounds 

coincide and hence (Qn) = 2n–k. These bounds are correct also for i(Qn). 
 
 R.W.Hamming [4] proved the following theorem, 
Theorem 1.2 [4] Qn has a perfect single-error correcting code if and only if n = 2k–1. 
Arumugam et al [1] have independently proved the same theorem. 
 
Zelinka [8] has proved the following theorem: 

Theorem 1.3[8] Let k be a positive integer. Then the graph of the cube of dimension 2k1 
and the graph of the cube of dimension 2k have both the domatic number 2k. 
 
Jaeun Lee has proved the following: 
Theorem 1.4[7] Let n be a natural number. Then the following are equivalent. (1) The 

hypercube Qn has an independent perfect dominating set. (2) n = 2m1 for a natural 
number m. 

 Here, we independently prove that (Qn) = 2n–k when n = 2k¸ and we obtain 

bounds for , i, t, and c whenever 2k  n  2k+12. We also conjecture that, (Qn) = 



 
 

21 Domination Parameters Of Hypercubes 

(Qn–1) + (2n–1(Qn–1))/(n1) for 2k+1  n  2k+1–2, where x denote the least 
integer not less than x. 
For brevity, take m = 2k throughout this paper. Thus 2m = 2k+1 

 

2.Structure of the Hypercubes Qn 

           The n-cube Qn is the graph whose vertex set is the set of all n-dimensional Boolean 
vectors; two vectors being joined if and only if they differ in exactly one coordinate. We 

observe that Q1 = K2, Qn = Qn–1  K2, if n  2. Now, Qn can be viewed as follows: 
 Let t = 2n–1 and let (Qn–1)0, (Qn–1)1 be two copies of Qn–1 with vertex sets V((Qn–1)0) = {u1

0, 

u2
0,…, ut

0}, V((Qn–1)1) = {u1
1, u2

1,…, ut
1}, where ui  Qn–1. 

 Then V(Qn) = V((Qn–1)0)  V((Qn–1)1),  

E(Qn) = E((Qn–1)0)  E((Qn–1)1)  { ui
0ui

1: i =1, 2,…, t}. Similarly,  

Qn+1 = Qn  K2 = (Qn–1  K2)  K2. .Let (Qn–1)00, (Qn–1)10, (Qn–1)01, (Qn–1)11 be 22 copies of  
Qn–1 with V((Qn–1)00) = { u1

00, u2
00,..., ut

00 }, V((Qn–1)10) = { u1
10, u2

10,…, ut
10 }, V((Qn–1)01) =      

{ u1
01, u2

01 ,…,  ut
01 }, V((Qn–1)11) = { u1

11, u2
11,…, ut

11 }, and  

              V(Qn+1) = V((Qn–1)00)  V((Qn–1)01)  V((Qn–1)10)  V((Qn–1)11),             

             E (Qn+1) = E((Qn–1)00)  E((Qn–1)10)  E((Qn –1)01)  E((Qn –1)11) 

                            { ui
00ui

01 : ui  Qn–1}   { ui
00ui

10 :  ui  Qn–1} 

                            { ui
10ui

11 : ui  Qn–1}   { ui
01ui

11  : ui  Qn–1}. 
That is, edges of Qn+1’s are just the union of edges of (Qn–1)00, (Qn–1)10, (Qn–1)01, (Qn–1)11 and 
the edges joining ui

xy and ui
pq, where (x,y) , (p,q) are two dimensional Boolean vectors 

differing exactly in one place. Let (Qn–1)000, (Qn–1)100, (Qn–1)010, (Qn–1)110,  (Qn–1)001, (Qn–1)101, 
(Qn–1)011, (Qn–1)111 be 23 copies of Qn–1 and V((Qn–1) 

xyz) = {u1
xyz, u2

xyz, …, ut
xyz}. Then  

V(Qn+2) = U V((Qn–1)xyz ), E(Qn+2) =  U E((Qn–1)xyz)  {ui
xyzui

pqr :(x,y,z), (p,q,r) denote 
Boolean vectors differing at exactly one  place}. Similarly, we can view Qn+3 ,…etc,  in 
terms of Qn–1 or Qn+3, Qn+4… etc in terms of Qn etc. 
Qn consists of 2k  pairwise vertex-disjoint copies of Qn–k. 
 For each binary k-tuple x in Qk and for each binary (n-k)-tuple y in Qn-k, let      
f(x, y) = xy, the concatenation of x and y. Clearly f is a 1-1 correspondance between the 

Cartesian product Qk  Qn–k and Qn, and it is easy to see that f is in fact edge preserving 

and therefore a graph isomorphism. Define (Qn-k)x to be {xy  y  Qn-k}. The family      

{(Qn–k)x x  Qk} gives the desired vertex partition of Qn into 2k copies of Qn-k. 
 

Proposition 2.1 Let S be any collection of k-dimensional Boolean vectors with k  4 such 
that any two of them differ in exactly two places. Then S contains exactly k elements. 
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Proof: .Let x be any vertex of Qk, and let S1 be the set of all neighbors of x. Then |S1| = k, 

and if y,z  S1, then d(y, z) = 2 (since y,x,z is a path). Therefore, S1 is a collection of        
k-dimensional Boolean vectors such that any two of them differ in exactly two places. 

Hence |S|  k ______  (1) 
 Suppose S contains more than k elements, S contains at least k+1 elements x1, x2, 
…, xk+1. 

Claim: There exists at least one pair xi, xj, i, j >1 , i  j  such that xi and xj will not differ in 
exactly two places. 
Proof of the claim: 
 Think of the vertices of Qk as the subset of [k] = {1, 2, 3, …, k}. By the vertex 

symmetry of Qk, we may assume that xk+1 = 0. Then for 1  i  k, xi is a 2-subset of [k]. 

By assumption, xi and xj differ in exactly 2 places, i.e. |xi xj| = 2. Now |xi xj| = |xi| + |xj| 

– 2|xi  xj| = 2 + 2 – 2|xi  xj|. Thus |xi  xj| = 1. Without loss of generality, we may 

assume that x1 = {1, 2}. We claim: either 1  xi for all 2  i  k or 2  xj for all 2  j  k. 
For if not, there exists an i such that xi = {2, a} and there exists a j such that xj = {1, b}, 

with a, b  3. Since |xi  xj| = 1, a = b. So xj = {1, 3} and xi = {2, 3}. Since k  4, there 

exists an xl with l  1, i, j. 

Case 1: 1 xl. Hence 2  xl (or else xl = x1). Then since |xi xj| = 1, xi xj = {1} and     

3  xl. Then xi  xj = , a contradiction. 

Case 2: 2  xl. Hence 1  xl Also, 3  xl since otherwise xl = xi. Then since |xi  xl| = 1, 

xl  xj = , again a contradiction. 

This proves our claim. Without loss of generality, assume 1  xi for all i = 1, 2, …, k. But 
there are only k–1 2-subsets of [k] which contain 1 as a member. This contradiction 

proves that S cannot have k+1 elements. Hence, |S|  k.  
From (1) and (2), we see that  |S| = k.. 
 

Remark 2.1 We know Qn= Qn–1  K2. V(Qn) = V((Qn1)0)  V((Qn–1)1) and E(Qn) = 

E((Qn–1)0)  E((Qn–1)1)  {ui
0ui

1: i = 1, 2, 3, ..., 2n–1, ui
0  V((Qn–1)0) , ui

1  V((Qn–1)1)}. 
Let D be a dominating set of Qn–1. Let D0, D1 be the corresponding dominating sets of   

(Qn–1)0
 , (Qn–1)1. Then (i) D0  D1 is a total dominating set for Qn,   

(ii) D0  {V((Qn–1)1)–D1} is a dominating set for Qn. Also if S1  V((Qn–1)1), then D0  S1 
is a  dominating  set for Qn if and only if S1 dominates  < V ((Qn–1)1) _ D1 >. 
 
Proposition 2.2 If n = 2k–1, vertices of Qn can be partitioned into 2k (= m) perfect 
dominating sets D1, D2, D3, ..., Dm  each containing exactly 2m–k–1 elements. 
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Proof: For if D1 is the perfect single-error correcting Hamming code on Qn, D1 is linear, 
i.e. a subgroup of Qn under vector addition. We take D2, D3, …, Dm to be the other cosets 
of D1 in Qn, thereby giving a partition of Qn into perfect dominating sets, all translates of 
D1 under addition. Thus all are perfect dominating sets, and have the same size.    
 

Remark 2.2 Consider Qm+1 = (Qm–1  Q2). It contains four disjoint copies of Qm–1 as 

subgraphs: (Qm–1)00, (Qm–1)01, (Qm–1)10, (Qm–1)11. We know (Qm–1) = i(Qm–1) = p(Qm–1). 
Let D1, D2 be any two disjoint perfect dominating sets of Qm–1, which exist since by the 
standing hypothesis m = 2k. Let (D1)00, (D2)11 be the corresponding dominating sets of 
(Qm–1)00, (Qm–1)11 respectively. Clearly, distance between (Qm–1)00, (Qm–1)11 is two, and 

distance between (D1)00, (D2)11 is three. Therefore, (D1)00  (D2)11 is an independent, 

perfect subset of V(Qm+1). Similarly, (D1)01  (D2)10 is an independent perfect subset of 

V(Qm+1). Note that neither of these is a dominating set since m+1 = 2k+1  2q – 1 for any 
q. 
 

3.Domination of Qn when n = 2k 
Theorem 3. 1 If m = 2k, then (Qm) = 2m–k. 

Proof:    We have Qm = Qm–1  K2  

Let Qm–1
0, Qm–1

1 be two copies of Qm–1. Then V(Qm) = V(Qm–1
0)   V(Qm–1

1) and E(Qm) = 

E(Qm–1
0)  E(Qm–1

1)  ui
0 ui

1 : ui  V(Qm–1) and i  = 1, 2, ..., t  where t = 2m–1 

We know that (Qm–1) = p(Qm–1) = 2m–k–1.  

Therefore, (Qm)  2(Qm–1) = 2m–k.   ------- ------------------- ( I ) 

Claim:   (Qm)  2m–k .  

Let D = S0  S1 be a minimum dominating set of Qm where, S0  V(Qm–1
0) and              

S1  V(Qm–1
1). 

 Case 1:   S0 is a minimum dominating set of Qm–1
0. 

  S0 = 2m–k–1 and distance between any two vertices of S0 is greater than or equal 
to 3. S0 dominate all the vertices of Qm–1

0 and 2m–k–1 vertices of Qm–1
1. Hence S0 dominates 

2m–1 + 2m–k–1 vertices of Qm. 

 Let S0 = vi
0/ i = 1, 2, …, 2m–k–1, vi  V(Qm–1) and d(vi, vj)  3. Let                    

S = vi
1/ i = 1,2,… 2m–k–1 , vi

0  S0  V(Qm–1
1). Then S0 dominates Qm–1

0 and S.         
V(Qm–1

1) – S contains 2m–1 – 2m–k–1 vertices each one is of degree m–2 in V(Qm–1
1) – S. 

Hence minimum number of vertices needed to dominate these vertices are                    
(2m–1 – 2m–k–1)/(m–1) = (2m–k–1(2k–1))/(m–1) 
                               = 2m–k–1, since m = 2k. 
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Hence  S1  2m–k–1. So,  D =  S0 + S1  2. 2m–k–1 = 2m–k 
                          Hence  (Qm)  2m–k 

Note: If S1 is a minimum dominating set of Qm–1
1 then we can prove S0  2m–k–1. 

 
Case 2(a): S0, S1 are not minimum dominating sets of Qm–1

0, Qm–1
1 respectively , but           

 S0 = 2m–k–1. 
 S0 is not a minimum dominating set of Qm–1

0 and hence it is not a dominating set 

of Qm–1
0. That is S0 is not dominating Qm–1

0 and  S0 = 2m–k–1. This implies that there exist 
at least (m–2) elements of Qm–1

0 which are not dominated by S0. 
 To dominate these vertices in Qm, (m–2) vertices must be included in S1. These 
(m–2) vertices dominate at most (m–1)(m–2) other vertices in Qm–1

1. Hence remaining 
vertices in Qm–1

1 = 2m–1 – (m–2) – (m–1)(m–2) = 2m–1 – (m–2)m 
To dominate these vertices at least (2m–1 – (m(m–2)))/m vertices must be included in S1. 

 Hence  S1  (m–2) + (2m–1 – (m(m–2)))/m 
                           = (2m–1)/m = 2m–k–1 

 Hence  D =  S0 + S1  2. 2m–k–1 = 2m–k 

                          (Qm)  2m–k 

Case 2(b): S0, S1 are not minimum dominating sets of Qm–1
0, Qm–1

1 respectively and either  

 S0 < 2m–k–1 or  S1 < 2m–k–1. 

 Let us assume that S0 < 2m–k–1. 

Subcase 1:  S0 = 2m–k–1 – 1. 

 Since (Qm–1) = p(Qm–1) = 2m–k–1, there exist at least one u0  V(Qm–1
0) such that 

elements of N[u0] is not dominated by any vertex of S0 and  N[u0] = m. 
 So to dominate these vertices of N[u0] in Qm, m vertices of V(Qm–1

1) must be 
included in D and hence in S1. 
 These vertices are nothing but u1 and neighbours of u1 in Qm–1

1. 
 These m elements dominate at most (m–1)(m–2) vertices of Qm–1

1 other than 
elements of N[u1]. (u1dominate (m–1) elements which are elements of N[u1] only and an 

element v  N[u1], v  u1 dominate (m–2) elements which are not in N[u1]). 
So, remaining vertices of Qm–1

1 is  2m–1 – m – (m–1)(m–2) 
                                                 = 2m–1 – m – m2 + 3m – 2 
                                                 = 2m–1 – m2 + 2m – 2. 
To dominate these vertices, at least (2m–1 – m2 + 2m – 2)/m vertices of Qm–1

1 are needed. 

Therefore,  S1  m + (2m–1 – m2 + 2m – 2)/m 
                                         = (2m–1)/m + 2 – 2/m 
                                         = (2m–1)/m + 1 + (1 – 2/m) 
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                                          2m–k–1+1. 

Hence,  D =  S0 + S1   (2m–k–1–1) + ( 2m–k–1+1) 
                                    = 2. 2m–k–1 = 2m–k 

             Therefore (Qm)  2m–k. 

Subcase 2: (general case) S0 = 2m–k–1 – r, r > 0 

 We know (Qm–1) = 2m–k–1 and any minimum dominating set of Qm–1 contain     
2m–k–1 elements and is also perfect. 

So, S0 = 2m–k–1 – r implies that, there exists at least r elements u1
0, u2

0, …, ur
0 in        

V(Qm–1
0) with d(ui

0, uj
0)  3, such that elements of N[u1

0]  N[u2
0] … N[ur

0] are not 
dominated by any element of S0 in Qm–1

0. So to dominate these vertices in Qm, rm vertices 

of N[u1
0]  N[u2

0] … N[ur
0] must be included in D and hence in S1. 

 These rm elements dominate at most r(m–1)(m–2) vertices of Qm–1
1 other than 

the elements of N[u1
1]  N[u2

1] … N[ur
1]. 

 So remaining vertices in Qm–1
1 are 2m–1 – rm – r(m–1)(m–2) 

             = 2m–1 – rm2 + 3rm – rm –2r = 2m–1 – rm2 + 2rm – 2r. 
To dominate these vertices at least (2m–1 – rm2 + 2rm – 2r)/m vertices are needed. 

Hence  S1   rm + (2m–1)/m – rm + 2r(m–1)/m 

                 = 2m–k–1 + r(2–2/m) = 2m–k–1 + r(1+1–2/m)   2m–k–1 + r 

Hence in this case also,  D =  S0 + S1   (2m–k–1 – r) + ( 2m–k–1 + r) = 2. 2m–k–1 = 2m–k 

Therefore, (Qm)  2m–k.  

Hence in all cases (Qm)  2m–k.    ---------------------------  ( II ) 

From ( I ) and ( II ), (Qm) = 2m–k.  
Note: Let D1, D2 be two disjoint perfect dominating sets of Qn–1. Let D1

0, D2
1 be the 

corresponding dominating sets of (Qn–1)0, (Qn–1)1. Then D1
0 U D2

1 is an independent 
minimum dominating set for Qn with cardinality 2n–k. 
 

Theorem 3.2 t(Qm) = 2m–k = p(Qm) = i(Qm), where m = 2k. 

Proof: Qm
 = Qm–1  K2. We can view Qm as V(Qm) = V((Qm–1)0)  V((Qm–1)1).  

E(Qm) = E((Qm–1)0)  E((Qm–1)1)  { ui
0ui

1 : ui
0  V((Qm–1)0), ui

1  V((Qm–1)1)},  i =1, 2, 

…, m–1. Let D be a -dominating set of Qm–1. Let D0, D1 be the corresponding 

dominating sets of Qm–1
0
, Qm–1

1 respectively. D0  D1 is a -dominating set of Qm
   and is 

total. Therefore, t(Qm) = 22m–k–1 = 2m–k.   We know that, V(Qm–1) can be   partitioned  
into  2k  sets each of which is the dominating  set  of Qm–1 containing 2m–k–1 elements  and  
each  of  those dominating set is  perfect in Qm–1. Let (D1)0 and (D2)0 be two disjoint 
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dominating sets in the domatic partition of (Qm–1)0. Let (D2)1 = {ui
1 : ui

0  (D2)0} then (D2)1 

is a dominating set of (Qm–1)1 and (D1)0  (D2)1 is a minimum dominating set of Qm
 and is 

independent. Therefore, i(Qm) = 22m–k–1 =2m–k. This proves the theorem. 
 

Theorem 3.3 If n = 2k+s with 0 < s < 2k–1, then 2n–k–1 < (Qn)  2n–k. 

Proof: n = 2k+s, 0 < s < 2k–1. We have (Qn)  2(Qn–1) for all n. As m = 2k, we have 

(Qm+s)  2(Qm+s–1)  22(Qm+s–2) … … 2s(Qm) = 2s  2m–k = 2m+s–k =  2n–k.          

Also, (Qn)  2n/(n+1).  

Hence, (Qm+s)  2m+s/(m+s+1) > 2m+s/(2m) =2m+s/(2k+1) = 2m+s–k–1 = 2n–k–1. Therefore,       

2n–k–1 <  (Qn)   2n–k. But s > 0 and s < 2k–1. Hence, 2n–k–1< (Qn)  2n–k.       
                                                                                                       

4. Independent Domination of Qn 

Theorem 4.1 i(Qn)  2n–k  for all n such that 2k–1  n  2k+1–2.  

Proof:  When n = 2k–1 = m–1, we know (Qm–1) = i(Qm–1) = p(Qm–1) =2m–k–1  = 2n–k and 
V(Qm–1) can be partitioned into m = 2k dominating sets of cardinality 2m–k–1. Therefore, 

V(Qm–1) = D1  D2 … Dm, where each Di is a perfect dominating set for Qm–1 and    

Di  Dj =  for i  j. Let (D1)0, (D2)1 be dominating sets of Qm–1
0 and Qm–1

1 respectively 
corresponding to the dominating sets D1, D2 of Qm–1.  

       In general, if n = 2k+s for 0  s  2k–2, then Qn has a vertex partition into 2s+1copies 
of Qm–1 and the degree of each vertex in Qn is n = 2k+s = m+s. Therefore only s+1 vertex 
disjoint copies of Qm–1 are at distance one from a particular vertex x of Qn . Hence we can 
take copies of an independent dominating set of Qm–1 in such a way that their union is an 

independent dominating set for Qm+s. (since s  2k–2 = m–2 and there are 2k independent 

mutually disjoint dominating sets for Qm–1, this is always possible). Thus, i(Qn) = i(Qm+s) 

 2s+1i(Qm–1) = 2s+12m–k–1 = 2n–k; that is, i(Qn)  2n–k for all n such that 2k–1  n  2k+1–2.  
 

5.Connected and Total domination of Qn 
Theorem 5.1 

If 2k–1  n  2k+1–2, then c(Qn)  2n–k + 2m–k –2, where m = 2k.   
Proof:  
Case 1: n = 2k–1 = m – 1.  

Let D be a -dominating set of Qm–1. We know  = i = p= D= 2m–k–1. The distance 

between any two elements in D is at least 3 and if u  D, then there exists v  D such 
that d(u, v) = 3 in Qm–1. Let D = {v1, v2, v3, ..., vt}, where t = 2m–k–1. 



 
 

27 Domination Parameters Of Hypercubes 

 Let D be the graph with vertex set D and whose edge set is defined by                 

 x, y   E(D) if and only if d(x, y) = 3 in Qm–1. We claim that D is connected. If not 
V(D) can be partitioned into non-empty subsets D1 and D2 such that there is no edge in D 

between D1 and D2. This means that for any x  D1 and any y  D2, d(x, y)  4 in Qm–1. 

Let        d(D1, D2) = d(u0, v0) = d0, u0  D1, v0  D2. Let u0, x1, x2, …, xd0 = v0 be a u0, v0 

path of length d0. If x2  N(u) for some u  D1 then u, x2, x3, …, xd0 = v0 is a path from 

D1 to D2 of length d0 –1, contradicting the minimality of d0. If x2  N(v) for some v  

D2, then u0, x1, x2, v is a D1, D2 path of length 3  d(D1, D2) in Qm–1. Thus x2  

N(D1)N(D2) = N(D), contradicting the fact that D is a dominating set . Thus D must be 

connected. Hence it has a spanning tree, withD –1 edges. Now each edge  x, y   D 
corresponds to an x, y path of length 3 in Qm–1. So by adjoining to D two vertices per edge 

of D we obtain a connected dominating set S, of size D+2(D–1) = (2m–k–1 +22m–k–1)–

2 = (32m–k–1)–2 = 32n–k–2. This proves case 1.                     
Case 2: n = 2k = m.   

Let D be a dominating set of Qm–1. Let D0 =  {x0  Qm x  D} and D1 =  {x1 Qm x  

D}, and for  each x  D, x0 and x1 are adjacent in Qm. We have seen in the proof of part 
(1) above that there is a connected dominating set S of (Qm–1)0

 which contains D0 and 

whose size is (32m–k–1)–2. Since each vertex of D1 is adjacent to vertex of D0  S, SD1 

is connected. Since for i = 0, 1 Di dominates (Qm–1)i, D0D1dominates Qm. Hence so does 

SD1, which is thus a connected dominating set for Qm. Its size is S +D1=        

(32m–k–1)–2 +2m–k–1 = 222m–k–1–2 = 2m–k+1–2 = 2n–k+1–2. Thus c(Qn)  2n–k+1–2 . 
Case 3: n = 2k +i = m+i = (m-1) + (i+1)       

Consider Qn, where n = 2k+i = m+i = (m–1)+(i+1), where 1 < i  2k–2. Qn has 2i+1 vertex 
disjoint copies of Qm–1. Name them (Qm–1)x, for each  i+1 dimensional Boolean vector x. 
Let D be a perfect dominating set of Qm–1. Let Dx be the corresponding dominating sets of 
(Qm–1)x. As in the proof of case 1, we can find a connected dominating set D of (Qm–1)0 

with cardinality (32m–k–1 –2). Therefore, D x Dx is a connected dominating set of Qn, 
where x ranges over all i+1 dimensional Boolean vectors.  

Hence, c(Qn)  (32m–k–1)–2 + ∑2m–k–1 = (32m–k–1)–2 + (2i+1–1) 2m–k–1  
                                    = (2i+1+2) 2m–k–1 –2 =  [2n–k+2m–k]–2.  

Thus the result is true for n = 2k+i, where 1 < i  2k–2.  
This proves the theorem. 
 
 



 
 

28 International Journal of Engineering Science, Advanced Computing and Bio-Technology 

Theorem 5.2 

(1) If n = 2k–1, then t(Qn)  2n–k+1.   

(2) If   2k  n  2k+1–2, then t(Qn)  2n–k.   
Proof of (1): n = 2k–1. 

Let D be a -dominating set of Qn. Then D= 2n–k =  (Qn). Let D = D + e1, where e1 = 

100…0. Then D D is a total dominating set and so t(Qn)   D D = 2 D = 
2n–k+1.  

Proof of (2): 2k  n  2k+1–2. 

Let n = 2k+i = m+i = (m–1)+(i+1), where 1  i  2k–2. Qn has 2i+1 vertex disjoint copies of 
Qm–1. Each can be denoted by (Qm–1)x, where x is any i+1 dimensional Boolean vector. Let 
D be a perfect dominating set of Qm–1 and let Dx be the corresponding dominating sets of 

(Qm–1)x. Therefore, x Dx is a total dominating set of Qn. Hence, t(Qn)  2i+12m–k–1 =   
2n–k.  This completes the proof of the theorem. 

Conjecture: We have Qn = Qn–1  K2. Any dominating set D of Qn–1
0 dominates 

Delements in Qn–1
1 and the remaining vertices form a subgraph of Qn–1

1 whose highest 
degree is n–2. Using the fact that the size of a minimum dominating set D of a graph G is 

bounded above by G  / (Δ+1), we conjecture that when 2k+1  n  2k+1–2,                

 (Qn) = (Qn–1) + (2n–1  (Qn–1))/ (n1) .             
   

References: 
[1] S.Arumugam and R.Kala, Domination parameters of Hypercubes, Journal of Indian Math. Soc.Vol 65,Nos.1–
4(1998), 31–38. 
 
[2] Buckley. F, Harary. F, Distance in graphs, Addison–Wesley, Publishing company (1990).            
 
[3] Bhanumathi, M., (2004), A Study on some Structural properties of Graphs and some new Graph operations on 
Graphs, Thesis, Bharathidasan University, Tamil Nadu, India. 
 
[4] R.W.Hamming, Error Detecting and Error Correcting codes, Bell Syst.Tech.J.,vol.26, No. 2, April  1950, 147-
160. 
 
[5] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel 
Dekker,Inc. 
 
[6]  P.K.Jha, Hypercubes, median graphs and products of graphs, Some Algorithmic and Combinatorial results, 
Ph.D. Dissertation, Department of Computer science, Iowa State University,1990. 
 
[7] Jaeun Lee, Independent Perfect domination sets in Cayley graphs, J. Graph Theory 37: 213-219, 2001. 
 
[8]  B.Zelinka, Domination numbers of cube graphs, Math Slovaca, 32(2), (1982), 117–1. 


