International Journal of Engineering Science, Advanced Computing and Bio-Technology Vol. 1, No. 1, January –March 2010, pp. 19-28

Domination Parameters Of Hypercubes

T.N.Janakiraman1 , M.Bhanumathi2 and S.Muthammai2

1 Department of Mathematics and Computer Applications, National Institute of Technology, Triuchirapalli, 620015,TamilNadu, India E-Mail: *janaki@nitt.edu, tnjraman2000@yahoo.com 2 Government Arts College for Women, Pudukkottai.622001, TamilNadu, India.*

E-Mail: *bhanu_ksp@yahoo.com, muthammai_s@yahoo.com*

Abstract: Let G be a connected graph. Let γ , γ_p , γ_e and γ_p denote respectively the domination *number, the independent domination number, the total domination number, the connected* domination number and the perfect domination number of G. The n-cube Q_n is the graph, whose *vertex set is the set of all n-dimensional Boolean vectors with two vertices being joined if and only if* they differ in exactly one coordinate. Hamming proved that Q_n has a perfect dominating set if and only if $n = 2^k - 1$. Here, it is proved that $\gamma(Q_n) = 2^{n-k}$ for $n = 2^k$. Bounds for $\gamma_i(Q_n)$, $\gamma_i(Q_n)$, $\gamma_i(Q_n)$ and $\gamma_p(Q_n)$ *are also found out. Finally, it is conjectured that* $\gamma(Q_n) = \gamma(Q_{n-1}) + \sqrt{(2^{n-1}-\gamma(Q_{n-1}))/\ (n-1)\ \int$ for 2^k+1 $\leq n \leq 2^{k+1}-2$, where $\lceil x \rceil$ denote the least integer not less than x.

1. Introduction

Let G be a finite, connected, undirected, simple graph with vertex set $V(G)$ and edge set $E(G)$. A vertex u is said to dominate the vertex v if $E(G)$ contains an edge from u to v or if

 $u = v$. A set $D \subseteq V(G)$ is a *dominating set*, if every vertex in $V(G)$ is either an element of D or is adjacent to an element of D; that is every vertex of G is dominated by at least one member of D. A dominating set D is an *independent dominating* set, if no two vertices in <D> are adjacent, that is, D is an independent set. A dominating set D is a *connected dominating* set, if < D > is a connected subgraph of G. A dominating set D is a *perfect dominating* set, if each vertex of G is dominated by exactly one element of D. Clearly every perfect dominating set is independent dominating set. A dominating set D is a *total dominating* set, if $\langle D \rangle$ has no isolated vertex. The domination number γ of G is defined to be the minimum cardinality of a dominating set in G. Similarly, we can define the perfect domination number γ_p , connected domination number γ_c , total domination number γ_v independent domination number γ _i for a graph G. It is clear that a perfect dominating set for a graph is necessarily a minimum dominating set. A dominating set with cardinality $\gamma(G)$ is known as a γ -dominating set. The *domatic number* d(G) of a graph G is the maximum number of elements in a partition of $V(G)$ into dominating sets. The *distance* d(u, v) between two vertices u and v in G is the minimum length of a path joining them. Let D_1 and D_2 be two subsets of V(G). Distance between the two sets D_1 , D_2

Received: 08 February, 2009; Revised: 23 February, 2009; Accepted: 3 March, 2009

is defined as the minimum of $\{d(u, v) : u \in D_1, v \in D_2\}$. The definitions and details not furnished here may be found in [2] and [5]. The hypercube or n-cube Q_n is the graph whose vertex set is the set of all n-dimensional Boolean vectors in which two vertices are joined if and only if they differ in exactly one coordinate. We observe that $Q_1 = K_2$ and Q_n $= Q_{n-1} \times K_2$ if $n \geq 2$.

 A communication network can be represented by a connected graph G, where the vertices of G represent processors and edges represent bi-directional communication channels. The hypercube Q_n of dimension n is one of the most versatile and powerful interconnection networks. It has been successfully employed in the architecture of massively parallel computers. A dominating set in Q_n can be interpreted as a set of processors from which information can be passed on to all the other processors. Hence, the determination of the domination parameters of Q_n is a significant problem.

 The notion of perfect dominating set in a hypercube is same as that of a singleerror correcting binary code, which is due to R.W.Hamming[4]. Jha [6] has proved the following theorem:

Theorem 1.1[6] Let γ (Q_n) denote the domination number of Q_n. Then $[2^{n}/(n+1)] \leq \gamma(Q_n) \leq [2^{n}/2^{n}]$, where $h = \lfloor \log_2(n+1) \rfloor$. If $n = 2^{k}-1$, then the two bounds coincide and hence $\gamma(Q_n) = 2^{n-k}$. These bounds are correct also for $\gamma_i(Q_n)$.

R.W.Hamming [4] proved the following theorem,

Theorem 1.2 [4] Q_n has a perfect single-error correcting code if and only if $n = 2^k - 1$. Arumugam et al [1] have independently proved the same theorem.

Zelinka [8] has proved the following theorem:

Theorem 1.3[8] Let k be a positive integer. Then the graph of the cube of dimension 2^k-1 and the graph of the cube of dimension 2^k have both the domatic number 2^k .

Jaeun Lee has proved the following:

Theorem 1.4[7] Let n be a natural number. Then the following are equivalent. (1) The hypercube Q_n has an independent perfect dominating set. (2) $n = 2^m-1$ for a natural number m.

Here, we independently prove that $\gamma(Q_n) = 2^{n-k}$ when $n = 2^k$, and we obtain bounds for γ , γ_i , γ_v , and γ_c whenever $2^k \le n \le 2^{k+1}-2$. We also conjecture that, $\gamma(Q_n)$ =

 $\gamma(Q_{n-1}) + | (2^{n-1} - \gamma(Q_{n-1}))/(n-1) |$ for $2^{k} + 1 \le n \le 2^{k+1} - 2$, where $|x|$ denote the least integer not less than x.

For brevity, take $m = 2^k$ throughout this paper. Thus $2m = 2^{k+1}$

2.Structure of the Hypercubes Q_n

The n-cube Q_n is the graph whose vertex set is the set of all n-dimensional Boolean vectors; two vectors being joined if and only if they differ in exactly one coordinate. We observe that $Q_1 = K_2$, $Q_n = Q_{n-1} \times K_2$, if $n \ge 2$. Now, Q_n can be viewed as follows: Let $t = 2^{n-1}$ and let $(Q_{n-1})^0$, $(Q_{n-1})^1$ be two copies of Q_{n-1} with vertex sets $V((Q_{n-1})^0) = {u_1}^0$, u_2^0, \ldots, u_t^0 , $V((Q_{n-1})^1) = {u_1^1, u_2^1, \ldots, u_t^1}$, where $u_i \in Q_{n-1}$. Then $V(Q_n) = V((Q_{n-1})^0) \cup V((Q_{n-1})^1)$, $E(Q_n) = E((Q_{n-1})^0) \cup E((Q_{n-1})^1) \cup \{u_i^0u_i^1 : i = 1, 2, ..., t\}.$ Similarly, $Q_{n+1} = Q_n \times K_2 = (Q_{n-1} \times K_2) \times K_2$. Let $(Q_{n-1})^{00}$, $(Q_{n-1})^{10}$, $(Q_{n-1})^{01}$, $(Q_{n-1})^{11}$ be 2^2 copies of Q_{n-1} with $V((Q_{n-1})^{00}) = \{u_1^{00}, u_2^{00},..., u_t^{00}\}, V((Q_{n-1})^{10}) = \{u_1^{10}, u_2^{10},..., u_t^{10}\}, V((Q_{n-1})^{01}) =$ $\{u_1^{01}, u_2^{01}, \ldots, u_t^{01}\}, V((Q_{n-1})^{11}) = \{u_1^{11}, u_2^{11}, \ldots, u_t^{11}\},$ and

$$
V(Q_{n+1}) = V((Q_{n-1})^{00}) \cup V((Q_{n-1})^{01}) \cup V((Q_{n-1})^{10}) \cup V((Q_{n-1})^{11}),
$$

\n
$$
E(Q_{n+1}) = E((Q_{n-1})^{00}) \cup E((Q_{n-1})^{10}) \cup E((Q_{n-1})^{01}) \cup E((Q_{n-1})^{11})
$$

\n
$$
\cup \{ u_i^{00}u_i^{01} : u_i \in Q_{n-1} \} \cup \{ u_i^{00}u_i^{10} : u_i \in Q_{n-1} \}
$$

\n
$$
\cup \{ u_i^{10}u_i^{11} : u_i \in Q_{n-1} \} \cup \{ u_i^{01}u_i^{11} : u_i \in Q_{n-1} \}.
$$

That is, edges of Q_{n+1} 's are just the union of edges of $(Q_{n-1})^{00}$, $(Q_{n-1})^{10}$, $(Q_{n-1})^{01}$, $(Q_{n-1})^{11}$ and the edges joining u_i^{xy} and u_i^{pq} , where (x,y) , (p,q) are two dimensional Boolean vectors differing exactly in one place. Let $(Q_{n-1})^{000}$, $(Q_{n-1})^{100}$, $(Q_{n-1})^{010}$, $(Q_{n-1})^{110}$, $(Q_{n-1})^{001}$, $(Q_{n-1})^{101}$, $(Q_{n-1})^{011}$, $(Q_{n-1})^{111}$ be 2^3 copies of Q_{n-1} and $V((Q_{n-1})^{xyz}) = {u_1^{xyz}}, u_2^{xyz}, ..., u_t^{xyz}$. Then $V(Q_{n+2}) = U V((Q_{n-1})^{xyz}$), $E(Q_{n+2}) = U E((Q_{n-1})^{xyz}) \cup \{u_i^{xyz}u_i^{pqr}:(x,y,z),(p,q,r)$ denote Boolean vectors differing at exactly one place}. Similarly, we can view Q_{n+3} ,...etc, in terms of Q_{n-1} or Q_{n+3} , Q_{n+4} ... etc in terms of Q_n etc.

 $Q_{\rm n}$ consists of $2^{\rm k}$ pairwise vertex-disjoint copies of $Q_{\rm n-k}.$

For each binary k-tuple x in Q_k and for each binary (n-k)-tuple y in Q_{n-k} , let $f(x, y) = xy$, the concatenation of x and y. Clearly f is a 1-1 correspondance between the Cartesian product $Q_k \times Q_{n-k}$ and Q_n , and it is easy to see that f is in fact edge preserving and therefore a graph isomorphism. Define $(Q_{n-k})^x$ to be $\{xy \mid y \in Q_{n-k}\}\$. The family ${({Q_{n-k}})^x \mid x \in Q_k}$ gives the desired vertex partition of Q_n into 2^k copies of Q_{n-k} .

Proposition 2.1 Let S be any collection of k-dimensional Boolean vectors with $k \geq 4$ such that any two of them differ in exactly two places. Then S contains exactly k elements.

Proof: Let x be any vertex of Q_k , and let S_1 be the set of all neighbors of x. Then $|S_1| = k$, and if $y, z \in S_1$, then d(y, z) = 2 (since y,x,z is a path). Therefore, S_1 is a collection of k-dimensional Boolean vectors such that any two of them differ in exactly two places. Hence $|S| \ge k$ — (1)

Suppose S contains more than k elements, S contains at least $k+1$ elements $x_1, x_2,$ $\ldots, X_{k+1}.$

Claim: There exists at least one pair x_i , x_j , $i, j > 1$, $i \neq j$ such that x_i and x_j will not differ in exactly two places.

Proof of the claim:

Think of the vertices of Q_k as the subset of $[k] = \{1, 2, 3, ..., k\}$. By the vertex symmetry of Q_k , we may assume that $x_{k+1} = 0$. Then for $1 \le i \le k$, x_i is a 2-subset of [k]. By assumption, x_i and x_j differ in exactly 2 places, i.e. $|x_i \Delta x_j| = 2$. Now $|x_i \Delta x_j| = |x_i| + |x_j|$ $-2|x_i \cap x_j| = 2 + 2 - 2|x_i \cap x_j|$. Thus $|x_i \cap x_j| = 1$. Without loss of generality, we may assume that $x_1 = \{1, 2\}$. We claim: either $1 \in x_i$ for all $2 \le i \le k$ or $2 \in x_j$ for all $2 \le j \le k$. For if not, there exists an i such that $x_i = \{2, a\}$ and there exists a j such that $x_j = \{1, b\}$, with a, $b \ge 3$. Since $|x_i \cap x_j| = 1$, $a = b$. So $x_j = \{1, 3\}$ and $x_i = \{2, 3\}$. Since $k \ge 4$, there exists an x_i with $l \neq 1$, i, j.

Case 1: $1 \in x_1$. Hence $2 \notin x$ l (or else $x_1 = x_1$). Then since $|x_i \cap x_j| = 1$, $x_i \cap x_j = \{1\}$ and $3 \notin x_1$. Then $x_i \cap x_j = \emptyset$, a contradiction.

Case 2: $2 \in x_1$. Hence $1 \notin x_1$ Also, $3 \notin x_1$ since otherwise $x_1 = x_1$. Then since $|x_i \cap x_1| = 1$, $x_1 \cap x_j = \emptyset$, again a contradiction.

This proves our claim. Without loss of generality, assume $1 \in x_i$ for all $i = 1, 2, ..., k$. But there are only k–1 2-subsets of [k] which contain 1 as a member. This contradiction proves that S cannot have k+1 elements. Hence, $|S| \le k$.

From (1) and (2), we see that $|S| = k$..

Remark 2.1 We know $Q_n = Q_{n-1} \times K_2$. $V(Q_n) = V((Q_{n-1})^0) \cup V((Q_{n-1})^1)$ and $E(Q_n) =$ $E((Q_{n-1})^0) \cup E((Q_{n-1})^1) \cup \{u_i^0u_i^1: i = 1, 2, 3, ..., 2^{n-1}, u_i^0 \in V((Q_{n-1})^0), u_i^1 \in V((Q_{n-1})^1)\}.$ Let D be a dominating set of Q_{n-1} . Let D^0 , D^1 be the corresponding dominating sets of $(Q_{n-1})^0$, $(Q_{n-1})^1$. Then (i) $D^0 \cup D^1$ is a total dominating set for Q_n ,

(ii) $D^0 \cup \{V((Q_{n-1})^1) - D^1\}$ is a dominating set for Q_n . Also if $S^1 \subseteq V((Q_{n-1})^1)$, then $D^0 \cup S^1$ is a dominating set for Q_n if and only if S^1 dominates $\langle V((Q_{n-1})^1) - D^1 \rangle$.

Proposition 2.2 If $n = 2^k-1$, vertices of Q_n can be partitioned into 2^k (= m) perfect dominating sets $D_1, D_2, D_3, ..., D_m$ each containing exactly 2^{m-k-1} elements.

Proof: For if D_1 is the perfect single-error correcting Hamming code on Q_n , D_1 is linear, i.e. a subgroup of Q_n under vector addition. We take $D_2, D_3, ..., D_m$ to be the other cosets of D_1 in Q_n , thereby giving a partition of Q_n into perfect dominating sets, all translates of $D₁$ under addition. Thus all are perfect dominating sets, and have the same size.

Remark 2.2 Consider $Q_{m+1} = (Q_{m-1} \times Q_2)$. It contains four disjoint copies of Q_{m-1} as subgraphs: $(Q_{m-1})^{00}$, $(Q_{m-1})^{01}$, $(Q_{m-1})^{10}$, $(Q_{m-1})^{11}$. We know $\gamma(Q_{m-1}) = \gamma_i(Q_{m-1}) = \gamma_p(Q_{m-1})$. Let D_1 , D_2 be any two disjoint perfect dominating sets of Q_{m-1} , which exist since by the standing hypothesis m = 2^k . Let $(D_1)^{00}$, $(D_2)^{11}$ be the corresponding dominating sets of $(Q_{m-1})^{00}$, $(Q_{m-1})^{11}$ respectively. Clearly, distance between $(Q_{m-1})^{00}$, $(Q_{m-1})^{11}$ is two, and distance between $(D_1)^{00}$, $(D_2)^{11}$ is three. Therefore, $(D_1)^{00} \cup (D_2)^{11}$ is an independent, perfect subset of $V(Q_{m+1})$. Similarly, $(D_1)^{01} \cup (D_2)^{10}$ is an independent perfect subset of $V(Q_{m+1})$. Note that neither of these is a dominating set since $m+1 = 2^{k}+1 \neq 2^{q} - 1$ for any q.

3.Domination of Q_n when $n = 2^k$

Theorem 3. 1 If $m = 2^k$, then $\gamma(Q_m) = 2^{m-k}$.

Proof: We have Q_{m} ₌ Q_{m-1} \times K₂ Let Q_{m-1}^0 , Q_{m-1}^1 be two copies of Q_{m-1} . Then $V(Q_m) = V(Q_{m-1}^0) \cup V(Q_{m-1}^1)$ and $E(Q_m) =$ $E(Q_{m-1}^{\quad 0}) \cup E(Q_{m-1}^{\quad 1}) \cup \{u_i^{\,0} \, u_i^{\,1} : u_i \in V(Q_{m-1}) \text{ and } i = 1, 2, ..., t \}$ where $t = 2^{m-1}$ We know that $\gamma(Q_{m-1}) = \gamma_p(Q_{m-1}) = 2^{m-k-1}$. Therefore, $\gamma(Q_m) \leq 2\gamma(Q_{m-1}) = 2^{m-k}$. ------- ------------------- (I) **Claim:** $\gamma(Q_m) \geq 2^{m-k}$.

Let $D = S^0 \cup S^1$ be a minimum dominating set of Q_m where, $S^0 \subseteq V(Q_{m-1}^0)$ and $S^1 \subseteq V(Q_{m-1}^1)$.

Case 1: S^0 is a minimum dominating set of Q_{m-1}^0 .

 $\left| S^0 \right| = 2^{m-k-1}$ and distance between any two vertices of S^0 is greater than or equal to 3. S^0 dominate all the vertices of Q_{m-1}^0 and 2^{m-k-1} vertices of Q_{m-1}^{-1} . Hence S^0 dominates $2^{m-1} + 2^{m-k-1}$ vertices of Q_m .

Let $S^0 = \{v_i^0 / i = 1, 2, ..., 2^{m-k-1}, v_i \in V(Q_{m-1}) \text{ and } d(v_i, v_j) \geq 3\}$. Let $S = \{v_i^1 / i = 1, 2, ... 2^{m-k-1}, v_i^0 \in S^0\} \subseteq V(Q_{m-1}^{-1})$. Then S^0 dominates Q_{m-1}^{-0} and S. $V(Q_{m-1}^{\{1\}}) - S$ contains $2^{m-1} - 2^{m-k-1}$ vertices each one is of degree m-2 in $V(Q_{m-1}^{\{1\}}) - S$. Hence minimum number of vertices needed to dominate these vertices are $(2^{m-1} - 2^{m-k-1})/(m-1) = (2^{m-k-1}(2^k-1))/(m-1)$ $= 2^{m-k-1}$, since m = 2^k .

24 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Hence
$$
|S^1| \ge 2^{m-k-1}
$$
. So, $|D| = |S^0| + |S^1| \ge 2$. $2^{m-k-1} = 2^{m-k}$
Hence $\gamma(Q_m) \ge 2^{m-k}$

Note: If S¹ is a minimum dominating set of Q_{m-1}^{-1} then we can prove $|S^0| \ge 2^{m-k-1}$.

Case 2(a): S^0 , S^1 are not minimum dominating sets of Q_{m-1}^0 , Q_{m-1}^1 respectively, but $\left| S^{0} \right| = 2^{m-k-1}.$

 S^0 is not a minimum dominating set of Q_{m-1}^0 and hence it is not a dominating set of Q_{m-1}^0 . That is S^0 is not dominating Q_{m-1}^0 and $\|S^0\| = 2^{m-k-1}$. This implies that there exist at least (m–2) elements of $Q_{m-1}^{\quad 0}$ which are not dominated by $S^0.$

To dominate these vertices in Q_m , (m-2) vertices must be included in S^1 . These (m-2) vertices dominate at most (m-1)(m-2) other vertices in Q_{m-1}^{-1} . Hence remaining vertices in $Q_{m-1}^{-1} = 2^{m-1} - (m-2) - (m-1)(m-2) = 2^{m-1} - (m-2)m$

To dominate these vertices at least $(2^{m-1} - (m(m-2)))/m$ vertices must be included in S^1 .

Hence
$$
|S^1| \ge (m-2) + (2^{m-1} - (m(m-2)))/m
$$

\n $= (2^{m-1})/m = 2^{m-k-1}$
\nHence $|D| = |S^0| + |S^1| \ge 2 \cdot 2^{m-k-1} = 2^{m-k}$
\n $\gamma(Q_m) \ge 2^{m-k}$

Case 2(b): S^0 , S^1 are not minimum dominating sets of Q_{m-1}^0 , Q_{m-1}^0 respectively and either $\left| S^{0} \right| < 2^{m-k-1}$ or $\left| S^{1} \right| < 2^{m-k-1}$.

Let us assume that $|S^0| < 2^{m-k-1}$.

<u>Subcase 1:</u> $|S^0| = 2^{m-k-1} - 1$.

Since $\gamma(Q_{m-1}) = \gamma_p(Q_{m-1}) = 2^{m-k-1}$, there exist at least one $u^0 \in V(Q_{m-1}^0)$ such that elements of N[u⁰] is not dominated by any vertex of S⁰ and $|N[u^0]| = m$.

So to dominate these vertices of N[u⁰] in Q_m , m vertices of V(Q_{m-1} ¹) must be included in D and hence in S^1 .

These vertices are nothing but u^1 and neighbours of u^1 in Q_{m-1}^1 .

These m elements dominate at most $(m-1)(m-2)$ vertices of Q_{m-1}^{-1} other than elements of N[u¹]. (u¹dominate (m-1) elements which are elements of N[u¹] only and an element $v \in N[u^1]$, $v \neq u^1$ dominate (m-2) elements which are not in $N[u^1]$).

So, remaining vertices of Q_{m-1}^{-1} is 2^{m-1} – m – (m–1)(m–2)

$$
= 2m-1 - m - m2 + 3m - 2
$$

$$
= 2m-1 - m2 + 2m - 2.
$$

To dominate these vertices, at least $(2^{m-1} - m^2 + 2m - 2)/m$ vertices of Q_{m-1}^{-1} are needed. Therefore, $|S^1| \ge m + (2^{m-1} - m^2 + 2m - 2)/m$ $=(2^{m-1})/m + 2 - 2/m$

$$
= (2^{m-1})/m + 1 + (1 - 2/m)
$$

 $> 2^{m-k-1}+1$. Hence, $|D| = |S^0| + |S^1| \ge (2^{m-k-1}-1) + (2^{m-k-1}+1)$ $= 2. 2^{m-k-1} = 2^{m-k}$

Therefore $\gamma(O_m) \geq 2^{m-k}$.

<u>Subcase 2: (general case)</u> $|S^0| = 2^{m-k-1} - r, r > 0$

We know $\gamma(Q_{m-1}) = 2^{m-k-1}$ and any minimum dominating set of Q_{m-1} contain 2^{m-k-1} elements and is also perfect.

So, $|S^0| = 2^{m-k-1}$ – r implies that, there exists at least r elements u_1^0 , u_2^0 , ..., u_r^0 in $V(Q_{m-1}^{\quad 0})$ with $d(u_i^0, u_j^0) \geq 3$, such that elements of $N[u_1^{\quad 0}] \cup N[u_2^{\quad 0}] \dots \cup N[u_r^{\quad 0}]$ are not dominated by any element of S^0 in Q_{m-1}^0 . So to dominate these vertices in Q_m , rm vertices of $N[u_1^0] \cup N[u_2^0] \dots \cup N[u_r^0]$ must be included in D and hence in S¹.

These rm elements dominate at most $r(m-1)(m-2)$ vertices of Q_{m-1}^{-1} other than the elements of $N[u_1^{\,1}] \cup N[u_2^{\,1}] \dots \cup N[u_r^{\,1}]$.

So remaining vertices in Q_{m-1}^{-1} are 2^{m-1} – rm – r(m-1)(m-2)

 $= 2^{m-1} - rm^2 + 3rm - rm - 2r = 2^{m-1} - rm^2 + 2rm - 2r$.

To dominate these vertices at least $(2^{m-1} - rm^2 + 2rm - 2r)/m$ vertices are needed.

Hence $|S^1| \geq rm + (2^{m-1})/m - rm + 2r(m-1)/m$

 $= 2^{m-k-1} + r(2-2/m) = 2^{m-k-1} + r(1+1-2/m) \ge 2^{m-k-1} + r$

Hence in this case also, $|D| = |S^0| + |S^1| \ge (2^{m-k-1} - r) + (2^{m-k-1} + r) = 2 \cdot 2^{m-k-1} = 2^{m-k}$ Therefore, $\gamma(Q_m) \geq 2^{m-k}$.

Hence in all cases $\gamma(Q_m) \geq 2^{m-k}$. ------------------------------- (II)

From (I) and (II), $\gamma(Q_m) = 2^{m-k}$.

Note: Let D_1 , D_2 be two disjoint perfect dominating sets of Q_{n-1} . Let D_1^0 , D_2^1 be the corresponding dominating sets of $(Q_{n-1})^0$, $(Q_{n-1})^1$. Then D_1^0 U D_2^1 is an independent minimum dominating set for Q_n with cardinality 2^{n-k} .

Theorem 3.2 $\gamma_t(Q_m) = 2^{m-k} = \gamma_p(Q_m) = \gamma_i(Q_m)$, where m = 2^k .

Proof: $Q_m = Q_{m-1} \times K_2$. We can view Q_m as $V(Q_m) = V((Q_{m-1})^0) \cup V((Q_{m-1})^1)$.

 $E(Q_m)=E((Q_{m-1})^0)\,\,\bigcup\,\,E((Q_{m-1})^1)\,\,\bigcup\,\,\{\,\,{\bf u}_i^{\,0}{\bf u}_i^{\,1}\colon{\bf u}_i^{\,0}\in\,\,V((Q_{m-1})^0),\,{\bf u}_i^{\,1}\in\,\,V((Q_{m-1})^1)\},\ \,i=1,\,2,$..., m-1. Let D be a γ -dominating set of Q_{m-1} . Let D^0 , D^1 be the corresponding dominating sets of $Q_{m-1}^{\quad 0}, Q_{m-1}^{\quad 1}$ respectively. $D^0 \cup D^1$ is a γ -dominating set of Q_m^{\quad} and is , total. Therefore, $\gamma_t(Q_m) = 2 \times 2^{m-k-1} = 2^{m-k}$. We know that, $V(Q_{m-1})$ can be partitioned into 2^k sets each of which is the dominating set of Q_{m-1} containing 2^{m-k-1} elements and each of those dominating set is perfect in Q_{m-1} . Let $(D_1)^0$ and $(D_2)^0$ be two disjoint International Journal of Engineering Science, Advanced Computing and Bio-Technology

dominating sets in the domatic partition of $(Q_{m-1})^0$. Let $(D_2)^1 = \{u_i^1 : u_i^0 \in (D_2)^0\}$ then $(D_2)^1$ is a dominating set of $(Q_{m-1})^1$ and $(D_1)^0 \cup (D_2)^1$ is a minimum dominating set of Q_m and is independent. Therefore, $\gamma_i(Q_m) = 2 \times 2^{m-k-1} = 2^{m-k}$. This proves the theorem.

Theorem 3.3 If $n = 2^k + s$ with $0 < s < 2^k - 1$, then $2^{n-k-1} < \gamma(Q_n) \leq 2^{n-k}$.

Proof: $n = 2^k + s$, $0 < s < 2^k - 1$. We have $\gamma(Q_n) \leq 2\gamma(Q_{n-1})$ for all n. As $m = 2^k$, we have $\gamma(Q_{m+s}) \leq 2\gamma(Q_{m+s-1}) \leq 2^2\gamma(Q_{m+s-2}) \leq \ldots \ldots \leq 2^s\gamma(Q_m) = 2^s \times 2^{m-k} = 2^{m+s-k} = 2^{n-k}.$ Also, $\gamma(Q_n) \geq 2^n/(n+1)$. Hence, $\gamma(Q_{m+s}) \geq 2^{m+s} / (m+s+1) > 2^{m+s} / (2m) = 2^{m+s} / (2^{k+1}) = 2^{m+s-k-1} = 2^{n-k-1}$. Therefore, $2^{n-k-1} < \gamma(Q_n) \leq 2^{n-k}$. But $s > 0$ and $s < 2^k-1$. Hence, $2^{n-k-1} < \gamma(Q_n) \leq 2^{n-k}$.

4. Independent Domination of Qn

Theorem 4.1 $\gamma_i(Q_n) \leq 2^{n-k}$ for all n such that $2^k-1 \leq n \leq 2^{k+1}-2$. **Proof:** When $n = 2^{k-1} = m-1$, we know $\gamma(Q_{m-1}) = \gamma_i(Q_{m-1}) = \gamma_p(Q_{m-1}) = 2^{m-k-1} = 2^{n-k}$ and $V(Q_{m-1})$ can be partitioned into $m = 2^k$ dominating sets of cardinality 2^{m-k-1} . Therefore, $V(Q_{m-1}) = D_1 \cup D_2 \cup ... \cup D_m$, where each D_i is a perfect dominating set for Q_{m-1} and $D_i \cap D_j = \emptyset$ for $i \neq j$. Let $(D_1)^0$, $(D_2)^1$ be dominating sets of Q_{m-1}^{-0} and Q_{m-1}^{-1} respectively corresponding to the dominating sets D_1 , D_2 of Q_{m-1} .

In general, if $n = 2^k + s$ for $0 \le s \le 2^k - 2$, then Q_n has a vertex partition into 2^{s+1} copies of Q_{m-1} and the degree of each vertex in Q_n is $n = 2^k+s = m+s$. Therefore only s+1 vertex disjoint copies of Q_{m-1} are at distance one from a particular vertex x of Q_n . Hence we can take copies of an independent dominating set of Q_{m-1} in such a way that their union is an independent dominating set for Q_{m+s} . (since $s \leq 2^{k}-2 = m-2$ and there are 2^{k} independent mutually disjoint dominating sets for Q_{m-1} , this is always possible). Thus, $\gamma_i(Q_n) = \gamma_i(Q_{m+s})$ $\leq 2^{s+1}\gamma_i(Q_{m-1}) = 2^{s+1}2^{m-k-1} = 2^{n-k}$; that is, $\gamma_i(Q_n) \leq 2^{n-k}$ for all n such that $2^k - 1 \leq n \leq 2^{k+1} - 2$.

5. Connected and Total domination of Q_n

Theorem 5.1

If $2^{k}-1 \le n \le 2^{k+1}-2$, then $\gamma_c(Q_n) \le 2^{n-k} + 2^{m-k} -2$, where $m = 2^k$. Proof:

Case 1: $n = 2^k-1 = m - 1$.

Let D be a γ -dominating set of Q_{m-1} . We know $\gamma = \gamma_i = \gamma_p = |\nD| = 2^{m-k-1}$. The distance between any two elements in D is at least 3 and if $u \in D$, then there exists $v \in D$ such that $d(u, v) = 3$ in Q_{m-1} . Let $D = \{v_1, v_2, v_3, ..., v_t\}$, where $t = 2^{m-k-1}$.

 Let D be the graph with vertex set D and whose edge set is defined by $\langle x, y \rangle \in E(D)$ if and only if $d(x, y) = 3$ in Q_{m-1} . We claim that D is connected. If not $V(D)$ can be partitioned into non-empty subsets $D₁$ and $D₂$ such that there is no edge in D between D_1 and D_2 . This means that for any $x \in D_1$ and any $y \in D_2$, $d(x, y) \ge 4$ in Q_{m-1} . Let $d(D_1, D_2) = d(u_0, v_0) = d_0, u_0 \in D_1, v_0 \in D_2$. Let $u_0, x_1, x_2, ..., x_{d0} = v_0$ be a u_0, v_0 path of length d_0 . If $x_2 \in N(u)$ for some $u \in D_1$ then u, $x_2, x_3, ..., x_{d0} = v_0$ is a path from D_1 to D_2 of length d_0 –1, contradicting the minimality of d_0 . If $x_2 \in N(v)$ for some $v \in$ D_2 , then u_0 , x_1 , x_2 , v is a D_1 , D_2 path of length $3 \le d(D_1, D_2)$ in Q_{m-1} . Thus $x_2 \notin$ $N(D_1)\cup N(D_2) = N(D)$, contradicting the fact that D is a dominating set. Thus D must be connected. Hence it has a spanning tree, with $|D| - 1$ edges. Now each edge $\lt x, y \gt \in D$ corresponds to an x, y path of length 3 in Q_{m-1} . So by adjoining to D two vertices per edge of D we obtain a connected dominating set S, of size $|D|+2(|D|-1) = (2^{m-k-1}+2\times2^{m-k-1}) 2 = (3 \times 2^{m-k-1}) - 2 = 3 \times 2^{n-k} - 2$. This proves case 1. **Case 2:** $\underline{n} = 2^k = m$.

Let D be a dominating set of Q_{m-1} . Let $D^0 = \{x^0 \in Q_m \mid x \in D\}$ and $D^1 = \{x^1 \in Q_m \mid x \in D\}$ D}, and for each $x \in D$, x^0 and x^1 are adjacent in Q_m . We have seen in the proof of part (1) above that there is a connected dominating set S of $(Q_{m-1})^0$ which contains D^0 and whose size is $(3 \times 2^{m-k-1})$ –2. Since each vertex of D^1 is adjacent to vertex of $D^0 \subseteq S$, $S \cup D^1$ is connected. Since for $i = 0, 1$ D^i dominates $(Q_{m-1})^i$, $D^0 \cup D_1$ dominates Qm. Hence so does i S $\bigcup D^1$, which is thus a connected dominating set for Q_m . Its size is $|S| + |D^1| =$ $(3 \times 2^{m-k-1}) - 2 + 2^{m-k-1} = 2^2 \times 2^{m-k-1} - 2 = 2^{m-k+1} - 2 = 2^{n-k+1} - 2$. Thus $\gamma_c(Q_n) \leq 2^{n-k+1} - 2$. **Case 3:** $n = 2^k + i = m + i = (m-1) + (i+1)$

Consider Q_n , where $n = 2^k + i = m + i = (m-1) + (i+1)$, where $1 < i \leq 2^k - 2$. Q_n has 2^{i+1} vertex disjoint copies of Q_{m-1} . Name them $(Q_{m-1})^x$, for each i+1 dimensional Boolean vector x. Let D be a perfect dominating set of Q_{m-1} . Let D^x be the corresponding dominating sets of $(Q_{m-1})^x$. As in the proof of case 1, we can find a connected dominating set D of $(Q_{m-1})^0$ with cardinality (3 \times 2^{m-k-1} -2). Therefore, D \cup_x D^x is a connected dominating set of Q_n, where x ranges over all i+1 dimensional Boolean vectors.

Hence,
$$
\gamma_c(Q_n) \le (3 \times 2^{m-k-1}) - 2 + \Sigma 2^{m-k-1} = (3 \times 2^{m-k-1}) - 2 + (2^{i+1} - 1) 2^{m-k-1}
$$

= $(2^{i+1} + 2) 2^{m-k-1} - 2 = [2^{n-k} + 2^{m-k}] - 2$.

Thus the result is true for $n = 2^k + i$, where $1 < i \leq 2^k - 2$. This proves the theorem.

28 International Journal of Engineering Science, Advanced Computing and Bio-Technology

Theorem 5.2

(1) If $n = 2^k - 1$, then $\gamma_t(Q_n) \leq 2^{n-k+1}$.

(2) If $2^k \le n \le 2^{k+1}-2$, then $\gamma_t(Q_n) \le 2^{n-k}$.

Proof of (1): $n = 2^k-1$.

Let D be a γ -dominating set of Q_n. Then $|D|= 2^{n-k} = \gamma(Q_n)$. Let $D' = D + e_1$, where $e_1 =$ 100...0. Then D \cup D' is a total dominating set and so $\gamma_t(Q_n) \leq |D \cup D'| = 2 \times |D| =$ 2^{n-k+1}

Proof of (2): $2^k \le n \le 2^{k+1}-2$.

Let $n = 2^{k} + i = m + i = (m-1) + (i+1)$, where $1 \le i \le 2^{k} - 2$. Q_n has 2^{i+1} vertex disjoint copies of Q_{m-1} . Each can be denoted by $(Q_{m-1})^x$, where x is any i+1 dimensional Boolean vector. Let D be a perfect dominating set of Q_{m-1} and let D^x be the corresponding dominating sets of $(Q_{m-1})^x$. Therefore, $\bigcup_x D^x$ is a total dominating set of Q_n . Hence, $\gamma_t(Q_n) \leq 2^{i+1} \times 2^{m-k-1} =$ 2n–k. This completes the proof of the theorem.

Conjecture: We have $Q_n = Q_{n-1} \times K_2$. Any dominating set D of Q_{n-1}^0 dominates $|D|$ elements in Q_{n-1}^{-1} and the remaining vertices form a subgraph of Q_{n-1}^{-1} whose highest degree is n–2. Using the fact that the size of a minimum dominating set D of a graph G is bounded above by $||G|| / (\Delta + 1)$, we conjecture that when $2^{k} + 1 \le n \le 2^{k+1} - 2$, $\gamma(Q_n) = \gamma(Q_{n-1}) + \left[(2^{n-1} - \gamma(Q_{n-1}))/ (n-1) \right]$.

References:

[1] S.Arumugam and R.Kala, Domination parameters of Hypercubes, Journal of Indian Math. Soc.Vol 65,Nos.1– 4(1998), 31–38.

[2] Buckley. F, Harary. F, Distance in graphs, Addison–Wesley, Publishing company (1990).

[3] Bhanumathi, M., (2004), A Study on some Structural properties of Graphs and some new Graph operations on Graphs, Thesis, Bharathidasan University, Tamil Nadu, India.

[4] R.W.Hamming, Error Detecting and Error Correcting codes, Bell Syst.Tech.J.,vol.26, No. 2, April 1950, 147- 160.

[5] Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker,Inc.

[6] P.K.Jha, Hypercubes, median graphs and products of graphs, Some Algorithmic and Combinatorial results, Ph.D. Dissertation, Department of Computer science, Iowa State University,1990.

[7] Jaeun Lee, Independent Perfect domination sets in Cayley graphs, J. Graph Theory 37: 213-219, 2001.

[8] B.Zelinka, Domination numbers of cube graphs, Math Slovaca, 32(2), (1982), 117–1.